Skip to main content

Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice


Recently, low-level laser (light) therapy has been used to increase muscle performance in intense exercises. However, there is a lack of understanding of the time response of muscles to light therapy. The first purpose of this study was to determine the time response for light-emitting diode therapy (LEDT)-mediated increase in adenosine triphosphate (ATP) in the soleus and gastrocnemius muscles in mice. Second purpose was to test whether LEDT can increase the resistance of muscles to fatigue during intense exercise. Fifty male Balb/c mice were randomly allocated into two equal groups: LEDT-ATP and LEDT-fatigue. Both groups were subdivided into five equal subgroups: LEDT-sham, LEDT-5 min, LEDT-3 h, LEDT-6 h, and LEDT-24 h. Each subgroup was analyzed for muscle ATP content or fatigue at specified time after LEDT. The fatigue test was performed by mice repeatedly climbing an inclined ladder bearing a load of 150 % of body weight until exhaustion. LEDT used a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 infrared (850 ± 20 nm, 50 mW) delivering 80 mW/cm2 for 90 s (7.2 J/cm2) applied to legs, gluteus, and lower back muscles. LEDT-6 h was the subgroup with the highest ATP content in soleus and gastrocnemius compared to all subgroups (P < 0.001). In addition, mice in LEDT-6 h group performed more repetitions in the fatigue test (P < 0.001) compared to all subgroups: LEDT-sham and LEDT-5 min (~600 %), LEDT-3 h (~200 %), and LEDT-24 h (~300 %). A high correlation between the fatigue test repetitions and the ATP content in soleus (r = 0.84) and gastrocnemius (r = 0.94) muscles was observed. LEDT increased ATP content in muscles and fatigue resistance in mice with a peak at 6 h. Although the time response in mice and humans is not the same, athletes might consider applying LEDT at 6 h before competition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose Response 9(4):602–618. doi:10.2203/dose-response.11-009.Hamblin

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908. doi:10.1016/S0140-6736(09)61522-1

    Article  PubMed  Google Scholar 

  3. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329. doi:10.1089/1549541041797841

    Article  PubMed  Google Scholar 

  4. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17. doi:10.1016/S1011-1344(98)00219-X

    Article  CAS  PubMed  Google Scholar 

  5. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383. doi:10.2203/dose-response.09-027.Hamblin

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Mosc) 69(1):81–90

    Article  CAS  Google Scholar 

  7. Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27(3):608–617

    CAS  Google Scholar 

  8. Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80(2):366–372. doi:10.1562/2004-03-25-RA-1232004-03-25-RA-123

    Article  CAS  PubMed  Google Scholar 

  9. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361. doi:10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  10. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2008) Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 26(6):593–599. doi:10.1089/pho.2008.2246

    Article  PubMed  Google Scholar 

  11. Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610. doi:10.1002/iub.359

    Article  CAS  PubMed  Google Scholar 

  12. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680. doi:10.1111/j.1751-1097.2010.00732.x

    Article  CAS  PubMed  Google Scholar 

  13. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223

    Article  CAS  PubMed  Google Scholar 

  14. Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175(1):95–99

    Article  CAS  PubMed  Google Scholar 

  15. Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1(4):267–286. doi:10.1515/plm-2012-0032

    Article  PubMed Central  PubMed  Google Scholar 

  16. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67. doi:10.4085/1062-6050-48.1.12

    PubMed Central  PubMed  Google Scholar 

  17. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. doi:10.1007/s10103-013-1465-4

    Google Scholar 

  18. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. doi:10.1152/physrev.00015.2007

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD (2009) Position stand on androgen and human growth hormone use. J Strength Cond Res 23(5 Suppl):S1–S59. doi:10.1519/JSC.0b013e31819df2e6

    Article  PubMed  Google Scholar 

  20. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. doi:10.1089/pho.2007.2160

    Article  PubMed  Google Scholar 

  21. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  22. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. doi:10.2519/jospt.2010.3294

    Article  PubMed  Google Scholar 

  23. Lee S, Barton ER, Sweeney HL (1985) Farrar RP (2004) Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J Appl Physiol 96(3):1097–1104. doi:10.1152/japplphysiol.00479.2003

    Article  Google Scholar 

  24. Ferraresi C, Parizotto NA, Pires de Sousa MV, Kaippert B, Huang Y-Y, Koiso T, Bagnato VS, Hamblin MR (2014) Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J Biophoton 9999 (9999):n/a-n/a. doi:10.1002/jbio.201400087

  25. Khan HA (2003) Bioluminometric assay of ATP in mouse brain: determinant factors for enhanced test sensitivity. J Biosci 28(4):379–382

    Article  CAS  PubMed  Google Scholar 

  26. Weber J, Lamb D (1970) Statistics and research in physical education. C. V. Mosby Co., Saint Louis

    Google Scholar 

  27. de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163. doi:10.1111/j.1751-1097.2011.00968.x

    Article  PubMed  Google Scholar 

  28. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi:10.1007/s00421-009-1321-1

    Article  PubMed  Google Scholar 

  29. Schuenke MD, Kopchick JJ, Hikida RS, Kraemer WJ, Staron RS (2008) Effects of growth hormone overexpression vs. growth hormone receptor gene disruption on mouse hindlimb muscle fiber type composition. Growth Hormon IGF Res 18(6):479–486. doi:10.1016/j.ghir.2008.04.003

    Article  CAS  Google Scholar 

  30. Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi:10.1007/s10103-011-0984-0

    Article  PubMed  Google Scholar 

  31. Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi:10.1007/s10103-010-0855-0

    Article  PubMed  Google Scholar 

Download references


We would like to thank Andrea L. Brissette for your assistance with multiple roles including purchase of reagents. Cleber Ferraresi would like to thank FAPESP for his PhD scholarships (numbers 2010/07194-7 and 2012/05919-0). Michael R. Hamblin was supported by US NIH grant R01AI050875.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael R. Hamblin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferraresi, C., de Sousa, M.V.P., Huang, YY. et al. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30, 1259–1267 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Light-emitting diode therapy
  • Muscle ATP content
  • Photobiomodulation
  • Resistance to exercise fatigue
  • Time response