Advertisement

Lasers in Medical Science

, Volume 29, Issue 3, pp 1261–1267 | Cite as

Imbalance of Ca2+ and K+ fluxes in C6 glioma cells after PDT measured with scanning ion-selective electrode technique

Original Article

Abstract

Photodynamic therapy (PDT) possesses the capacity to lead to death of C6 glioma in vitro and in vivo. The purpose of this study was to investigate whether Ca2+ and K+ homeostasis of C6 glioma cells were affected by PDT. C6 glioma cells were randomly divided into five groups: control group, Hematoporphyrin derivative (HpD) group (10 mg/l, without irradiation), PDT group (HpD 10 mg/l + irradiation), PDT&6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) group (HpD 10 mg/l + CNQX 50 mol/l + irradiation), and HpD&CNQX group (HpD 10 mg/l + CNQX 50 mol/l, without irradiation). Glioma cells in PDT and PDT&CNQX group were subjected to PDT. Cells in PDT&CNQX group were administered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonist CNQX prior to PDT on C6 glioma cells. The changes of Ca2+ and K+ fluxes were studied by using a non-invasive scanning ion-selective electrode technique (SIET). Morphology of C6 cells was observed with optical microscopy. PDT induced Ca2+ influx and K+ efflux significantly, which resulted in death of C6 cells. When AMPA glutamate receptor antagonist CNQX was applied, Ca2+ influx and K+ efflux were partly blocked up and viability of C6 cells increased. These results indicate that Ca2+ influx and K+ efflux may correlate with the treatment effects of PDT on C6 glioma cells.

Keywords

Non-invasive scanning ion-selective electrode technique photodynamic therapy glioma Ca2+ flux K+ flux 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81000532, 30670506).

Conflict of Interest

This work has no conflict of interest to declare.

References

  1. 1.
    Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331. doi: 10.1038/nrc2818 PubMedCrossRefGoogle Scholar
  2. 2.
    Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1–8. doi: 10.1016/j.jphotobiol.2009.04.001 PubMedCrossRefGoogle Scholar
  3. 3.
    Song K, Kong B, Qu X, Li L, Yang Q (2005) Phototoxicity of Hemoporfin to ovarian cancer. Biochem Biophys Res Commun 337(1):127–132. doi: 10.1016/j.bbrc.2005.09.021 PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao B, He YY (2010) Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev Anticancer Ther 10(11):1797–1809. doi: 10.1586/era.10.154 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bredell MG, Besic E, Maake C, Walt H (2010) The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B 101(3):185–190. doi: 10.1016/j.jphotobiol.2010.07.002 PubMedCrossRefGoogle Scholar
  6. 6.
    Xiao H, Liao Q, Cheng M, Li F, Xie B, Li M, Feng H (2009) 5-Amino-4-oxopentanoic acid photodynamic diagnosis guided microsurgery and photodynamic therapy on VX2 brain tumour implanted in a rabbit model. Chin Med J (Engl) 122(11):1316–1321Google Scholar
  7. 7.
    Li F, Cheng Y, Lu J, Hu R, Wan Q, Feng H (2011) Photodynamic therapy boosts anti-glioma immunity in mice: a dependence on the activities of T cells and complement C3. J Cell Biochem 112(10):3035–3043. doi: 10.1002/jcb.23228 PubMedCrossRefGoogle Scholar
  8. 8.
    Namatame H, Akimoto J, Matsumura H, Haraoka J, Aizawa K (2008) Photodynamic therapy of C6-implanted glioma cells in the rat brain employing second-generation photosensitizer talaporfin sodium. Photodiagnosis Photodyn Ther 5(3):198–209. doi: 10.1016/j.pdpdt.2008.08.001 PubMedCrossRefGoogle Scholar
  9. 9.
    Kabuto M, Kaye AH, Hill JS, Stylli SS (1994) Antitumour effect of MX2, a new morpholino anthracycline against C6 glioma cells and its cytotoxic effect in combination with photodynamic therapy. J Clin Neurosci 1(1):47–52PubMedCrossRefGoogle Scholar
  10. 10.
    Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99. doi: 10.1016/j.pdpdt.2012.01.001 PubMedCrossRefGoogle Scholar
  11. 11.
    Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre phase III randomised controlled trial. Lasers Med Sci 23(4):361–367. doi: 10.1007/s10103-007-0494-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67(19):9463–9471. doi: 10.1158/0008-5472.CAN-07-2034 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105(2):287–295. doi: 10.1111/j.1471-4159.2008.05301.x PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. doi: 10.1002/glia.21113 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Oh MC, Kim JM, Safaee M, Kaur G, Sun MZ, Kaur R, Celli A, Mauro TM, Parsa AT (2012) Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells. PLoS One 7(10):e47846. doi: 10.1371/journal.pone.0047846 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Du P, Hu S, Cheng Y, Li F, Li M, Li J, Yi L, Feng H (2012) Photodynamic therapy leads to death of C6 glioma cells partly through AMPAR. Brain Res 1433:153–159. doi: 10.1016/j.brainres.2011.11.048 PubMedCrossRefGoogle Scholar
  17. 17.
    Chen JH, Bian XW, Yao XH, Gong W, Hu J, Chen K, Iribarren P, Zhao W, Zhou XD (2006) Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun 342(4):1368–1374. doi: 10.1016/j.bbrc.2006.02.113 PubMedCrossRefGoogle Scholar
  18. 18.
    Li M, Li F, Lu JY, Feng H, Zhu G, Lin JK (2009) The effect of photodynamic therapy on cultured rat C6 glioma cells under different conditions. Chin J Neurosurg 25(2):140–142Google Scholar
  19. 19.
    Zhang ZY, Wang WJ, Pan LJ, Xu Y, Zhang ZM (2009) Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with non-invasive micro-test technique. World J Gastroenterol 15(33):4150–4155PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) Calcium mediates root K+/Na + homeostasis in poplar species differing in salt tolerance. Tree Physiol 29(9):1175–1186. doi: 10.1093/treephys/tpp048 PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman SA, Ye X, Chamberlain M, Mikkelsen T, Batchelor T, Desideri S, Piantadosi S, Fisher J, Fine HA (2009) Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J Clin Oncol 27(25):4155–4161. doi: 10.1200/JCO.2008.21.6895 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, Fine HA (2010) Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer 116(7):1776–1782. doi: 10.1002/cncr.24957 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Watanabe T, Ohtani T, Aihara M, Ishiuchi S (2013) Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models. J Neurosurg 118(4):838–845. doi: 10.3171/2012.11.JNS12362 PubMedCrossRefGoogle Scholar
  24. 24.
    Liu SJ, Zukin RS (2007) Ca2 + −permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30(3):126–134. doi: 10.1016/j.tins.2007.01.006 PubMedCrossRefGoogle Scholar
  25. 25.
    Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43(1):43–55. doi: 10.1016/j.neuron.2004.06.017 PubMedCrossRefGoogle Scholar
  26. 26.
    Deng W, Yue Q, Rosenberg PA, Volpe JJ, Jensen FE (2006) Oligodendrocyte excitotoxicity determined by local glutamate accumulation and mitochondrial function. J Neurochem 98(1):213–222. doi: 10.1111/j.1471-4159.2006.03861.x PubMedCrossRefGoogle Scholar
  27. 27.
    Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang X, Zheng X, Jiang H, Chopp M (2009) Intracellular free calcium mediates glioma cell detachment and cytotoxicity after photodynamic therapy. Lasers Med Sci 24(5):777–786. doi: 10.1007/s10103-008-0640-5 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Valencia-Cruz G, Shabala L, Delgado-Enciso I, Shabala S, Bonales-Alatorre E, Pottosin II, Dobrovinskaya OR (2009) K(bg) and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes. Am J Physiol Cell Physiol 297(6):C1544–C1553. doi: 10.1152/ajpcell.00064.2009 PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao YM, Sun LN, Zhou HY, Wang XL (2006) Voltage-dependent potassium channels are involved in glutamate-induced apoptosis of rat hippocampal neurons. Neurosci Lett 398(1–2):22–27. doi: 10.1016/j.neulet.2005.12.073 PubMedCrossRefGoogle Scholar
  30. 30.
    Xiao AY, Homma M, Wang XQ, Wang X, Yu SP (2001) Role of K(+) efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons. Neuroscience 108(1):61–67PubMedCrossRefGoogle Scholar
  31. 31.
    Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma–a review Part I–a biological basis. J Clin Neurosci 13(6):615–625. doi: 10.1016/j.jocn.2005.11.014 PubMedCrossRefGoogle Scholar
  32. 32.
    LoRusso AP, Yu W, Naim JO, Lanzafame RJ (1996) Effects of photodynamic therapy combined with methotrexate on C6 rat glioma cells: a preliminary study. J Clin Laser Med Surg 14(2):55–58PubMedGoogle Scholar
  33. 33.
    Hu SS, Cheng HB, Zheng YR, Zhang RY, Yue W, Zhang H (2007) Effects of photodynamic therapy on the ultrastructure of glioma cells. Biomed Environ Sci 20(4):269–273PubMedGoogle Scholar
  34. 34.
    Xu D, Ke Y, Jiang X, Cai Y, Peng Y, Li Y (2010) In vitro photodynamic therapy on human U251 glioma cells with a novel photosensitiser ZnPcS4-BSA. Br J Neurosurg 24(6):660–665. doi: 10.3109/02688697.2010.500416 PubMedCrossRefGoogle Scholar
  35. 35.
    Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma - a review. Part II - clinical studies. J Clin Neurosci 13(7):709–717. doi: 10.1016/j.jocn.2005.11.012 PubMedCrossRefGoogle Scholar
  36. 36.
    Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P (2005) Photodynamic therapy of high grade glioma - long term survival. J Clin Neurosci 12(4):389–398. doi: 10.1016/j.jocn.2005.01.006 PubMedCrossRefGoogle Scholar
  37. 37.
    deCarvalho AC, Zhang X, Roberts C, Jiang F, Kalkanis SN, Hong X, Lu M, Chopp M (2007) Subclinical photodynamic therapy treatment modifies the brain microenvironment and promotes glioma growth. Glia 55(10):1053–1060. doi: 10.1002/glia.20525 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Sheng-Li Hu
    • 1
  • Peng Du
    • 1
    • 2
  • Rong Hu
    • 1
  • Fei Li
    • 1
  • Hua Feng
    • 1
  1. 1.Department of Neurosurgery, Southwest HospitalThird Military Medical UniversityChongQingThe People’s Republic of China
  2. 2.Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenYangThe People’s Republic of China

Personalised recommendations