In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications


This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm2. The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Micheelis W, Bauch J (1996) Oral health of representative samples of Germans examined in 1989 and 1992. Community Dent Oral Epidemiol 24:62–70. doi:10.1111/j.1600-0528.1996.tb00815.x

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494. doi:10.1038/187493a0

    Article  Google Scholar 

  3. 3.

    Stern RH, Vahl J, Sonnaes RF (1972) Lased enamel: ultrastructural observations of pulsed carbon dioxide laser effects. J Dent Res 51:455–460. doi:10.1177/00220345720510023501

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Nelson DGA, Shariati M, Glena R, Shields CP, Featherstone JDB (1986) Effect of pulsed low energy infrared laser irradiation on artificial caries-like lesion formation. Caries Res 20:289–299. doi:10.1159/000260948

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Patel CKN, McFarlane RA, Faust WL (1964) Selective excitation through vibrational energy transfer and optical laser action in N2-CO2. Physiol Rev 13:617–619

    CAS  Google Scholar 

  6. 6.

    Nelson DGA, Jongedloed WL, Featherstone JBD (1986) Laser irradiation of human dental enamel. N Z Dent J 82:74–77

    CAS  PubMed  Google Scholar 

  7. 7.

    Moshonov J, Stabholz A, Bar-Hilel R, Peretz B (2005) Chemical analysis and surface morphology of enamel and dentin following 9.6 μm CO2 laser irradiation versus high speed drilling. J Dent 33:427–432. doi:10.1016/j.jdent.2004.11.005

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Rodrigues LKA, Nobre-dos-Santos M, Pereira D, Assaf AV, Pardi V (2004) Carbon dioxide laser in dental caries prevention. J Dent 32:531–540. doi:10.1016/j.jdent.2004.04.004

    PubMed  Article  Google Scholar 

  9. 9.

    Klein AL, Rodrigues LK, Eduardo CP, Nobre-dos-Santos M, Cury JA (2005) Caries inhibition around composite restorations by pulsed carbon dioxide laser application. Eur J Oral Sci 113:239–244. doi:10.1111/j.1600-0722.2005.00212.x

    PubMed  Article  Google Scholar 

  10. 10.

    Steiner-Oliveira C, Rodrigues LK, Soares LE, Martin AA, Zezell DM, Nobre-dos-Santos M (2006) Chemical, morphological and thermal effects of 10.6-μm CO2 laser on the inhibition of enamel demineralization. Dent Mater J 25(3):455–462. doi:10.4012/dmj.25.455

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hess JA (1990) Scanning electron microscopy study of laser-induced morphologic changes of a coated enamel surface. Lasers Surg Med 10:458–462. doi:10.1002/lsm.1900100510

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Arcoria CJ, Lippas MG, Vitasek BA (1993) Enamel surface roughness analysis after laser ablation and acid etching. J Oral Rehabil 20:213–224. doi:10.1111/j.1365-2842.1993.tb01603.x

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta A Mol Biomol Spectrosc 55:1303–1308. doi:10.1016/S1386-1425(99)00035-9

    Article  Google Scholar 

  14. 14.

    Takahashi K, Kimura Y, Matsumoto K (1998) Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 microns human dental hard tissue. J Clin Laser Med Surg 16:167–173

    CAS  PubMed  Google Scholar 

  15. 15.

    de Souza-e-Silva CM, Parisotto TM, Steiner-Oliveira C, Kamiya RU, Rodrigues LK, Nobre-dos-Santos M (2013) Carbon dioxide laser and bonding materials reduce enamel demineralization around orthodontic brackets. Lasers Med Sci 28:111–118. doi:10.1007/s10103-012-1076-5

    PubMed  Article  Google Scholar 

  16. 16.

    Esteves-Oliveira M, Zezell DM, Meister J, Franzen R, Stanzel S, Lampert F, Eduardo CP, Apel C (2009) CO2 laser (10.6 μm) parameters for caries prevention in dental enamel. Caries Res 43:261–268. doi:10.1159/000217858

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Hsu CYS, Jordan TH, Dederich DN, Wefel JS (2000) Effects of low-energy CO2 laser irradiation on the organic matrix inhibition of enamel demineralization. J Dent Res 79:1725–1730. doi:10.1177/00220345000790091401

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Hossain M, Nakamura Y, Kimura Y, Mitsuhiro I, Yamada Y, Matsumoto K (1999) Acquired acid resistance of dental hard tissues by CO2 laser irradiation. J Clin Laser Med Surg 17:223–226. doi:10.1089/clm.1999.17.223

    CAS  PubMed  Google Scholar 

  19. 19.

    Featherstone JD, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W (1998) CO2 laser inhibitor of artificial caries-like progression in dental enamel. J Dent Res 77:1397–1403. doi:10.1177/00220345980770060401

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Rodrigues LK, Nobre Dos Santos M, Featherstone JD (2006) In situ mineral loss inhibition by CO2 laser and fluoride. J Dent Res 85:617–621. doi:10.1177/154405910608500707

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Featherstone JDB, Fried D, Gansky SA, Stookey GK, Dunipace A (2001) Effect of carbon dioxide laser treatment on lesion progression in an intra-oral model. Lasers Dent SPIE VII 4249:87–91

    Article  Google Scholar 

  22. 22.

    Palamara J, Phakey PP, Rachinger WA (1987) The ultrastructure of human dental enamel heat-treated in the temperature range 200 °C to 600 °C. J Dent Res 66:1742–1747

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ferreira JM, Palamara J, Phakey PP, Rachinger WA, Orams HJ (1989) Effects of continuous wave CO2 laser on the ultrastructure of human dental enamel. Arch Oral Biol 34:551–62

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Zuerlein MJ, Fried D, Featherstone JDB (1999) Modeling the modification depth of carbon dioxide laser-treated dental enamel. Lasers Surg Med 25:335–347. doi:10.1002/(SICI)1096-9101

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tagliaferro EPS, Rodrigues LKA, Soares LES, Martin AA, Nobre-dos-Santos (2009) Physical and compositional changes on demineralized primary enamel induced by CO2 laser. Photomed Laser Surg 27:585–590. doi:10.1089/pho.2008.2311

    CAS  Article  Google Scholar 

  26. 26.

    Rodrigues LK, Cury JA, Nobre-dos-Santos MN (2004) The effect of gamma radiation on enamel hardness and its resistance to demineralization in vitro. J Oral Sci 46:215–220. doi:10.2334/josnusd.46.215

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Featherstone JDB, Shariati M, Brugler S, Fu J, White DJ (1988) Effect of an anticalculus dentifrice on lesion progression under pH-cycling conditions in vitro. Caries Res 22:337–341. doi:10.1159/ 000261133

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Steiner-Oliveira C, Rodrigues LKA, Lima EB, Nobre-dos-Santos MN (2008) Effect of the CO2 laser combined with fluoridated products on the inhibition of enamel demineralization. J Contemp Dent Pract 9:1–10

    Google Scholar 

  29. 29.

    Fattibene P, Carosi A, De Coste V, Sacchetti A, Nucara A, Postorino P et al (2005) A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin. Phys Med Biol 50:1095–1108. doi:10.1088/0031-9155/50/6/004

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Nishino M, Yamashita S, Aoba T, Okazaki M, Moriwaki Y (1981) The laser-Raman spectroscopic studies on human enamel and precipitated carbonate-containing apatites. J Dent Res 60:751–755. doi:10.1177/00220345810600031601

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Rehman I, Smith R, Hench LL, Bonfield W (1995) Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J Biomed Mater Res 29:1287–1294. doi:10.1002/jbm.820291016

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface layers on bioactive glasses. Biomaterials 15:865–870. doi:10.1016/0142-9612(94)90044-2

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Nelson DG, Williamson BE (1985) Raman spectra of phosphate and monofluorophosphate ions in several dentally-relevant materials. Caries Res 19:113–121. doi:10.1159/000260837

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Fowler BO, Kuroda S (1986) Changes in heated and laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208. doi:10.1007/BF02556711

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    McCormack SM, Fried D, Featherstone JDB, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74:1702–1708. doi:10.1177/00220345950740101201

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hirose M, Tange T, Igarashi S, Hirose Y, Nakagaki H (1996) In vivo fluoride profiles at different sites of buccal and lingual enamel surfaces obtained by enamel biopsy of human maxillary first permanent molars in young adults. Arch Oral Biol 41:1187–1190. doi:10.1016/S0003-9969(96)00089-1

    CAS  PubMed  Article  Google Scholar 

Download references


This paper was based on a thesis submitted by the first author, which received a scholarship from CAPES, to Piracicaba Dental School, University of Campinas, in partial fulfillment of the requirements for a Ph.D. degree in Dentistry (Pediatric Dentistry area).

Author information



Corresponding author

Correspondence to M. Nobre-dos-Santos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vieira, K.A., Steiner-Oliveira, C., Soares, L.E.S. et al. In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications. Lasers Med Sci 30, 901–907 (2015).

Download citation


  • CO2 laser
  • Dental enamel
  • Demineralization
  • SEM
  • FT-Raman