Laser treatment of recurrent herpes labialis: a literature review

Abstract

Recurrent herpes labialis is a worldwide life-long oral health problem that remains unsolved. It affects approximately one third of the world population and causes frequent pain and discomfort episodes, as well as social restriction due to its compromise of esthetic features. In addition, the available antiviral drugs have not been successful in completely eliminating the virus and its recurrence. Currently, different kinds of laser treatment and different protocols have been proposed for the management of recurrent herpes labialis. Therefore, the aim of the present article was to review the literature regarding the effects of laser irradiation on recurrent herpes labialis and to identify the indications and most successful clinical protocols. The literature was searched with the aim of identifying the effects on healing time, pain relief, duration of viral shedding, viral inactivation, and interval of recurrence. According to the literature, none of the laser treatment modalities is able to completely eliminate the virus and its recurrence. However, laser phototherapy appears to strongly decrease pain and the interval of recurrences without causing any side effects. Photodynamic therapy can be helpful in reducing viral titer in the vesicle phase, and high-power lasers may be useful to drain vesicles. The main advantages of the laser treatment appear to be the absence of side effects and drug interactions, which are especially helpful for older and immunocompromised patients. Although these results indicate a potential beneficial use for lasers in the management of recurrent herpes labialis, they are based on limited published clinical trials and case reports. The literature still lacks double-blind controlled clinical trials verifying these effects and such trials should be the focus of future research.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Embil JA, Stephens RG, Manuel FR (1975) Prevalence of recurrent herpes labialis and aphthous ulcers among young adults on six continents. Can Med Assoc J 113(7):627–630

    CAS  PubMed Central  PubMed  Google Scholar 

  2. 2.

    Lowhagen GB, Bonde E, Eriksson B, Nordin P, Tunback P, Krantz I (2002) Self-reported herpes labialis in a Swedish population. Scand J Infect Dis 34(9):664–667

    PubMed  Google Scholar 

  3. 3.

    Spruance SL (1992) The natural history of recurrent oral-facial herpes simplex virus infection. Semin Dermatol 11(3):200–206

    CAS  PubMed  Google Scholar 

  4. 4.

    Cernik C, Gallina K, Brodell RT (2008) The treatment of herpes simplex infections: an evidence-based review. Arch Intern Med 168(11):1137–1144. doi:10.1001/archinte.168.11.1137

    CAS  PubMed  Google Scholar 

  5. 5.

    Glenny AM, Fernandez Mauleffinch LM, Pavitt S, Walsh T (2009) Interventions for the prevention and treatment of herpes simplex virus in patients being treated for cancer. Cochrane Database Syst Rev. doi:10.1002/14651858.CD006706.pub2

    Google Scholar 

  6. 6.

    Harmenberg J, Oberg B, Spruance S (2010) Prevention of ulcerative lesions by episodic treatment of recurrent herpes labialis: a literature review. Acta Derm Venereol 90(2):122–130. doi:10.2340/00015555-0806

    CAS  PubMed  Google Scholar 

  7. 7.

    Woo SB, Challacombe SJ (2007) Management of recurrent oral herpes simplex infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(Suppl):S12 e11–S12 e18. doi:10.1016/j.tripleo.2006.11.004

    Google Scholar 

  8. 8.

    Opstelten W, Neven AK, Eekhof J (2008) Treatment and prevention of herpes labialis. Can Fam Physician 54(12):1683–1687

    PubMed Central  PubMed  Google Scholar 

  9. 9.

    Miller CS, Danaher RJ, Jacob RJ (1998) Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence. Crit Rev Oral Biol Med 9(4):541–562

    CAS  PubMed  Google Scholar 

  10. 10.

    Arduino PG, Porter SR (2008) Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 37(2):107–121

    PubMed  Google Scholar 

  11. 11.

    Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF (2009) Herpes simplex. Pediatr Rev 30(4):119–129. doi:10.1542/pir.30-4-119

    PubMed  Google Scholar 

  12. 12.

    Axell T, Liedholm R (1990) Occurrence of recurrent herpes labialis in an adult Swedish population. Acta Odontol Scand 48(2):119–123

    CAS  PubMed  Google Scholar 

  13. 13.

    Reichart PA (2000) Oral mucosal lesions in a representative cross-sectional study of aging Germans. Community Dent Oral Epidemiol 28(5):390–398

    CAS  PubMed  Google Scholar 

  14. 14.

    Crumpacker CS (2004) Use of antiviral drugs to prevent herpesvirus transmission. N Engl J Med 350(1):67–68. doi:10.1056/NEJMe038189

    CAS  PubMed  Google Scholar 

  15. 15.

    Esmann J (2001) The many challenges of facial herpes simplex virus infection. J Antimicrob Chemother 47(Suppl T1):17–27

    CAS  PubMed  Google Scholar 

  16. 16.

    Arduino PG, Porter SR (2006) Oral and perioral herpes simplex virus type 1 (HSV-1) infection: review of its management. Oral Dis 12(3):254–270

    CAS  PubMed  Google Scholar 

  17. 17.

    Fatahzadeh M, Schwartz RA (2007) Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57(5):737–763, quiz 764-736

    PubMed  Google Scholar 

  18. 18.

    Raborn GW, Grace MG (2003) Recurrent herpes simplex labialis: selected therapeutic options. J Can Dent Assoc 69(8):498–503

    PubMed  Google Scholar 

  19. 19.

    Spruance SL, Kriesel JD (2002) Treatment of herpes simplex labialis. Herpes 9(3):64–69

    PubMed  Google Scholar 

  20. 20.

    Fatahzadeh M, Schwartz RA (2007) Human herpes simplex labialis. Clin Exp Dermatol 32(6):625–630

    CAS  PubMed  Google Scholar 

  21. 21.

    Spruance SL, Nett R, Marbury T, Wolff R, Johnson J, Spaulding T (2002) Acyclovir cream for treatment of herpes simplex labialis: results of two randomized, double-blind, vehicle-controlled, multicenter clinical trials. Antimicrob Agents Chemother 46(7):2238–2243

    CAS  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Birek C (2000) Herpesvirus-induced diseases: oral manifestations and current treatment options. J Calif Dent Assoc 28(12):911–921

    CAS  PubMed  Google Scholar 

  23. 23.

    Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY (2008) Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79(1):62–70

    CAS  PubMed  Google Scholar 

  24. 24.

    Baker D, Eisen D (2003) Valacyclovir for prevention of recurrent herpes labialis: 2 double-blind, placebo-controlled studies. Cutis 71(3):239–242

    PubMed  Google Scholar 

  25. 25.

    Diaz-Mitoma F, Sibbald RG, Shafran SD, Boon R, Saltzman RL (1998) Oral famciclovir for the suppression of recurrent genital herpes: a randomized controlled trial. Collaborative Famciclovir Genital Herpes Research Group. JAMA 280(10):887–892

    CAS  PubMed  Google Scholar 

  26. 26.

    Kaplowitz LG, Baker D, Gelb L, Blythe J, Hale R, Frost P, Crumpacker C, Rabinovich S, Peacock JE Jr, Herndon J et al (1991) Prolonged continuous acyclovir treatment of normal adults with frequently recurring genital herpes simplex virus infection. The Acyclovir Study Group. JAMA 265(6):747–751

    CAS  PubMed  Google Scholar 

  27. 27.

    Koelle DM, Ghiasi H (2005) Prospects for developing an effective vaccine against ocular herpes simplex virus infection. Curr Eye Res 30(11):929–942. doi:10.1080/02713680500313153

    CAS  PubMed  Google Scholar 

  28. 28.

    De Clercq E, Walker RT (1984) Synthesis and antiviral properties of 5-vinylpyrimidine nucleoside analogs. Pharmacol Ther 26(1):1–44

    PubMed  Google Scholar 

  29. 29.

    Shinkai I, Ohta Y (1996) New drugs—reports of new drugs recently approved by the FDA. Dirithromycin. Bioorg Med Chem 4(4):521–522

    CAS  PubMed  Google Scholar 

  30. 30.

    Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16(1):114–128

    CAS  PubMed Central  PubMed  Google Scholar 

  31. 31.

    Datema R, Ericson AC, Field HJ, Larsson A, Stenberg K (1987) Critical determinants of antiherpes efficacy of buciclovir and related acyclic guanosine analogs. Antiviral Res 7(6):303–316

    CAS  PubMed  Google Scholar 

  32. 32.

    Earnshaw DL, Bacon TH, Darlison SJ, Edmonds K, Perkins RM, Vere Hodge RA (1992) Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob Agents Chemother 36(12):2747–2757

    CAS  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26(1):29–37

    CAS  PubMed  Google Scholar 

  34. 34.

    Huber MA (2003) Herpes simplex type-1 virus infection. Quintessence Int 34(6):453–467

    PubMed  Google Scholar 

  35. 35.

    Karu TI (1986) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR 291(5):1245–1249

    CAS  PubMed  Google Scholar 

  36. 36.

    Lito P, Pantanowitz L, Marotti J, Aboulafia DM, Campbell V, Bower M, Dezube BJ (2009) Gastroenteropancreatic neuroendocrine tumors in patients with HIV infection: a trans-Atlantic series. Am J Med Sci 337(1):1–4. doi:10.1097/MAJ.0b013e31817d1cb7

    PubMed  Google Scholar 

  37. 37.

    Zungu IL, Hawkins Evans D, Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation-an in vitro study. Photochem Photobiol 85(4):987–996. doi:10.1111/j.1751-1097.2008.00523.x

    CAS  PubMed  Google Scholar 

  38. 38.

    Tunér J (2011) Laser phototherapy (LPT) in dentistry. Int CE Mag Laser Dent 1(8–17)

    Google Scholar 

  39. 39.

    Karu T (1989) Photobiology of low-power laser effects. Health Phys 56(5):691–704

    CAS  PubMed  Google Scholar 

  40. 40.

    Ramalho KM, Luiz AC, de Paula EC, Tunér J, Magalhaes RP, Gallottini Magalhaes M (2011) Use of laser phototherapy on a delayed wound healing of oral mucosa previously submitted to radiotherapy: case report. Int Wound J 8(4):413–418. doi:10.1111/j.1742-481X.2011.00788.x

    PubMed  Google Scholar 

  41. 41.

    Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326

    CAS  PubMed  Google Scholar 

  42. 42.

    Schaffer M, Bonel H, Sroka R, Schaffer PM, Busch M, Reiser M, Duhmke E (2000) Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B 54(1):55–60

    CAS  PubMed  Google Scholar 

  43. 43.

    Kudo HC, Inomata K, Okajima K, Moteji M, Oshiro T (1998) Low-level laser therapy: pain attenuation mechanisms. Laser Therapy 2:3–6

    Google Scholar 

  44. 44.

    Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802. doi:10.1002/lsm.20583

    PubMed  Google Scholar 

  45. 45.

    Mizutani K, Musya Y, Wakae K, Kobayashi T, Tobe M, Taira K, Harada T (2004) A clinical study on serum prostaglandin E2 with low-level laser therapy. Photomed Laser Surg 22(6):537–539. doi:10.1089/pho.2004.22.537

    PubMed  Google Scholar 

  46. 46.

    Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 12(1):28–39. doi:10.1111/j.1529-8027.2007.00114.x

    PubMed  Google Scholar 

  47. 47.

    Donnarumma G, De Gregorio V, Fusco A, Farina E, Baroni A, Esposito V, Contaldo M, Petruzzi M, Pannone G, Serpico R (2010) Inhibition of HSV-1 replication by laser diode-irradiation: possible mechanism of action. Int J Immunopathol Pharmacol 23(4):1167–1176

    CAS  PubMed  Google Scholar 

  48. 48.

    de Carvalho RR, de Paula EF, Ramalho KM, Antunes JL, Bezinelli LM, de Magalhaes MH, Pegoretti T, de Freitas PM, de Paula EC (2010) Effect of laser phototherapy on recurring herpes labialis prevention: an in vivo study. Lasers Med Sci 25(3):397–402. doi:10.1007/s10103-009-0717-9

    PubMed  Google Scholar 

  49. 49.

    Sanchez PJM, Femenias JLC, Tejeda AD, Tunér J (2012) The of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg 30(1):37–40

    Google Scholar 

  50. 50.

    Schindl A, Neumann R (1999) Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study. J Invest Dermatol 113(2):221–223. doi:10.1046/j.1523-1747.1999.00684.x

    CAS  PubMed  Google Scholar 

  51. 51.

    Vélez-González M, Urrea-Arbeláez A, Nicolas M, Serra-Baldrich E, Perez JL, Pavesi M, Camarasa JMG, Trelles MA (1995) Treatment of relapse in herpes simplex on labial & facial areas and of primary herpes simplex on genital areas and “area pudenda” with low power laser (He-Ne) or Acyclovir administered orally. SPIE Proc 2630:43–50

    Google Scholar 

  52. 52.

    Eduardo CP, Bezinelli LM, Eduardo FP, Lopes RMG, Ramalho KM, Bello-Silva MS, Esteves-Oliveira M (2012) Prevention of recurrent herpes labialis outbreaks through low-intensity laser therapy. A clinical protocol with 3 years follow-up. Lasers Med Sci 27(5):1077–1083

    Google Scholar 

  53. 53.

    Marotti J, Aranha AC, Eduardo Cde P, Ribeiro MS (2009) Photodynamic therapy can be effective as a treatment for herpes simplex labialis. Photomed Laser Surg 27(2):357–363. doi:10.1089/pho.2008.2268

    PubMed  Google Scholar 

  54. 54.

    Marotti J, Sperandio FF, Fregnani ER, Aranha AC, de Freitas PM, Eduardo Cde P (2010) High-intensity laser and photodynamic therapy as a treatment for recurrent herpes labialis. Photomed Laser Surg 28(3):439–444. doi:10.1089/pho.2009.2522

    PubMed  Google Scholar 

  55. 55.

    Sperandio FF, Marotti J, Aranha AC, Eduardo Cde P (2009) Photodynamic therapy for the treatment of recurrent herpes labialis: preliminary results. Gen Dent 57(4):415–419

    PubMed  Google Scholar 

  56. 56.

    Bello-Silva MS, de Freitas PM, Aranha AC, Lage-Marques JL, Simoes A, de Paula EC (2010) Low- and high-intensity lasers in the treatment of herpes simplex virus 1 infection. Photomed Laser Surg 28(1):135–139. doi:10.1089/pho.2008.2458

    PubMed  Google Scholar 

  57. 57.

    Navarro R, Marquezan M, Cerqueira DF, Silveira BL, Correa MS (2007) Low-level-laser therapy as an alternative treatment for primary herpes simplex infection: a case report. J Clin Pediatr Dent 31(4):225–228

    PubMed  Google Scholar 

  58. 58.

    de Paula EC, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simoes A, Bello-Silva MS, Tuner J (2010) Laser phototherapy in the treatment of periodontal disease. A review Lasers Med Sci 25(6):781–792. doi:10.1007/s10103-010-0812-y

    Google Scholar 

  59. 59.

    Tunér J, Hode L (2007) The Laser Therapy Handbook. Prima Books, Grangesberg

    Google Scholar 

  60. 60.

    Eduardo CP, Bezinelli LM, Eduardo FP, Lopes RMG, Ramalho KM, Bello-Silva MS, Esteves-Oliveira M (2012) Prevention of recurrent herpes labialis outbreaks through low-intensity laser therapy. A clinical protocol with 3 years follow-up. Las Med Sci 27(5):1077–1083

    Google Scholar 

  61. 61.

    Gilioli G, Taparelli F, Fornaciari A, Palmieri B, Celani M (1985) Studio ultrastrutturale di colture cellulari “vero” infettate con virus Herpes Simplex e sottoposte all’- azione Laser [In Italian]. [Ultrastructural study of cell cultures infected with herpes simplex virus and subjected to the action of laser]. Med Laser Rep 3:28–31

    Google Scholar 

  62. 62.

    Novoselova EG, Glushkova OV, Cherenkov DA, Chudnovsky VM, Fesenko EE (2006) Effects of low-power laser radiation on mice immunity. Photodermatol Photoimmunol Photomed 22(1):33–38. doi:10.1111/j.1600-0781.2006.00191.x

    CAS  PubMed  Google Scholar 

  63. 63.

    Dougal G, Kelly P (2001) A pilot study of treatment of herpes labialis with 1072 nm narrow waveband light. Clin Exp Dermatol 26(2):149–154

    CAS  PubMed  Google Scholar 

  64. 64.

    Landthaler M, Haina D, Waidelich W (1983) Behandlung von zoster, postzosterischen schmerzen und herpes simplex recidivans in loco mit laser-licht. Fortsch Med 101:1039

    CAS  Google Scholar 

  65. 65.

    Ackermann G, Hartmann M, Scherer K, Lang EW, Hohenleutner U, Landthaler M, Baumler W (2002) Correlations between light penetration into skin and the therapeutic outcome following laser therapy of port-wine stains. Lasers Med Sci 17(2):70–78. doi:10.1007/s101030200013

    CAS  PubMed  Google Scholar 

  66. 66.

    Tunér J, Hode L (1999) Low level laser therapy: clinical practice and scientific background. Prima Books, Grangesberg

    Google Scholar 

  67. 67.

    Niemz MH (1996) Laser-tissue interactions: fundamentals and applications, 1st edn. Springer, Berlin

    Google Scholar 

  68. 68.

    Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89. doi:10.1007/s10103-006-0379-9

    PubMed  Google Scholar 

  69. 69.

    Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 187(11):1717–1725. doi:10.1086/375244

    PubMed Central  PubMed  Google Scholar 

  70. 70.

    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28

    CAS  PubMed  Google Scholar 

  71. 71.

    Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M (1998) A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization. Photochem Photobiol 68(3):370–376

    CAS  PubMed  Google Scholar 

  72. 72.

    Bhatti M, Nair SP, Macrobert AJ, Henderson B, Shepherd P, Cridland J, Wilson M (2001) Identification of photolabile outer membrane proteins of Porphyromonas gingivalis. Curr Microbiol 43(2):96–99. doi:10.1007/s002840010268

    CAS  PubMed  Google Scholar 

  73. 73.

    Harris F, Chatfield LK, Phoenix DA (2005) Phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627

    CAS  PubMed  Google Scholar 

  74. 74.

    Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE, Nesland JM (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79(12):2282–2308. doi:10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O

    CAS  PubMed  Google Scholar 

  75. 75.

    Bandyopadhyay-Ghosh S, Reaney IM, Johnson A, Hurrell-Gillingham K, Brook IM, Hatton PV (2008) The effect of investment materials on the surface of cast fluorcanasite glasses and glass-ceramics. J Mater Sci Mater Med 19(2):839–846. doi:10.1007/s10856-007-3207-2

    CAS  PubMed  Google Scholar 

  76. 76.

    Wainwright M (2003) Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents 21(6):510–520

    CAS  PubMed  Google Scholar 

  77. 77.

    Schulz EW (1928) Inactivation of Staphyloccus bacteriophage by Methylene Blue. Proc Soc Exp Biol Med 26:100–101

    Google Scholar 

  78. 78.

    Felber TD, Smith EB, Knox JM, Wallis C, Melnick JL (1973) Photodynamic inactivation of herpes simplex. J Am Med Assoc 223(3):289–292

    Google Scholar 

  79. 79.

    Rapp F, Kemeny BA (1977) Oncogenic potential of herpes simplex virus in mammalian cells following photodynamic inactivation. Photochem Photobiol 25(4):335–337

    CAS  PubMed  Google Scholar 

  80. 80.

    Myers MG, Oxman MN, Clark JE, Arndt KA (1975) Failure of neutral-red photodynamic inactivation in recurrent herpes simplex virus infections. N Engl J Med 293(19):945–949. doi:10.1056/NEJM197511062931901

    CAS  PubMed  Google Scholar 

  81. 81.

    Owens JW, Robins M (2000) The role of second generation organometallic complexes in the photodynamic therapeutic treatment of cancer. Recent Res Dev Inorg Chem 2:41–55

    CAS  Google Scholar 

  82. 82.

    Ackroyd R, Brown N, Vernon D, Roberts D, Stephenson T, Marcus S, Stoddard C, Reed M (1999) 5-Aminolevulinic acid photosensitization of dysplastic Barrett’s esophagus: a pharmacokinetic study. Photochem Photobiol 70(4):656–662

    CAS  PubMed  Google Scholar 

  83. 83.

    Schreiber GB, Busch MP, Kleinman SH, Korelitz JJ (1996) The risk of transfusion-transmitted viral infections. The retrovirus epidemiology donor study. N Engl J Med 334(26):1685–1690. doi:10.1056/NEJM199606273342601

    CAS  PubMed  Google Scholar 

  84. 84.

    Muller-Breitkreutz K, Mohr H (1998) Hepatitis C and human immunodeficiency virus RNA degradation by methylene blue/light treatment of human plasma. J Med Virol 56(3):239–245. doi:10.1002/(SICI)1096-9071(199811)56:3<239::AID-JMV11>3.0.CO;2-9

    CAS  PubMed  Google Scholar 

  85. 85.

    Smetana Z, Malik Z, Orenstein A, Mendelson E, Ben-Hur E (1997) Treatment of viral infections with 5-aminolevulinic acid and light. Lasers Surg Med 21(4):351–358. doi:10.1002/(SICI)1096-9101(1997)21:4<351::AID-LSM6>3.0.CO;2-P

    CAS  PubMed  Google Scholar 

  86. 86.

    Wagner SJ, Skripchenko A, Robinette D, Foley JW, Cincotta L (1998) Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem Photobiol 67(3):343–349

    CAS  PubMed  Google Scholar 

  87. 87.

    Schnipper LE, Lewin AA, Swartz M, Crumpacker CS (1980) Mechanisms of photodynamic inactivation of herpes simplex viruses: comparison between methylene blue, light plus electricity, and hematoporhyrin plus light. J Clin Invest 65(2):432–438. doi:10.1172/JCI109686

    CAS  PubMed Central  PubMed  Google Scholar 

  88. 88.

    Lambrecht B, Mohr H, Knuver-Hopf J, Schmitt H (1991) Photoinactivation of viruses in human fresh plasma by phenothiazine dyes in combination with visible light. Vox Sang 60(4):207–213

    CAS  PubMed  Google Scholar 

  89. 89.

    Tuite EM, Kelly JM (1993) Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B 21(2–3):103–124

    CAS  PubMed  Google Scholar 

  90. 90.

    Muller-Breitkreutz K, Mohr H (1997) Infection cycle of herpes viruses after photodynamic treatment with methylene blue and light. Beitr Infusionsther Transfusionsmed 34:37–42

    CAS  PubMed  Google Scholar 

  91. 91.

    Muller-Breitkreutz K, Mohr H, Briviba K, Sies H (1995) Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen. J Photochem Photobiol B 30(1):63–70

    CAS  PubMed  Google Scholar 

  92. 92.

    Wainwright M (2002) The emerging chemistry of blood product disinfection. Chem Soc Rev 31(2):128–136

    CAS  PubMed  Google Scholar 

  93. 93.

    Wagner SJ, Skripchenko A, Robinette D, Mallory DA, Cincotta L (1998) Preservation of red cell properties after virucidal phototreatment with dimethylmethylene blue. Transfusion 38(8):729–737

    CAS  PubMed  Google Scholar 

  94. 94.

    Wainwright M, Phoenix DA, Rice L, Burrow SM, Waring J (1997) Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J Photochem Photobiol B 40(3):233–239

    CAS  PubMed  Google Scholar 

  95. 95.

    Ben-Hur E, Hoeben RC, Van Ormondt H, Dubbelman TM, Van Steveninck J (1992) Photodynamic inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride. J Photochem Photobiol B 13(2):145–152

    CAS  PubMed  Google Scholar 

  96. 96.

    Van Lier JE (1990) Phthalocyanines as sensitizers for PDT of cancer. In: Kessel D (ed) Photodynamic therapy of neoplasis diseases, vol 1. CRC Press, Boca Raton, pp 279–291

    Google Scholar 

  97. 97.

    Smetana Z, Mendelson E, Manor J, van Lier JE, Ben-Hur E, Salzberg S, Malik Z (1994) Photodynamic inactivation of herpes viruses with phthalocyanine derivatives. J Photochem Photobiol B 22(1):37–43

    CAS  PubMed  Google Scholar 

  98. 98.

    Smetana Z, Ben-Hur E, Mendelson E, Salzberg S, Wagner P, Malik Z (1998) Herpes simplex virus proteins are damaged following photodynamic inactivation with phthalocyanines. J Photochem Photobiol B 44(1):77–83. doi:10.1016/S1011-1344(98)00124-9

    CAS  PubMed  Google Scholar 

  99. 99.

    Rywkin S, Lenny L, Goldstein J, Geacintov NE, Margolis-Nunno H, Horowitz B (1992) Importance of type I and type II mechanisms in the photodynamic inactivation of viruses in blood with aluminum phthalocyanine derivatives. Photochem Photobiol 56(4):463–469

    CAS  PubMed  Google Scholar 

  100. 100.

    Javaly K, Wohlfeiler M, Kalayjian R, Klein T, Bryson Y, Grafford K, Martin-Munley S, Hardy WD (1999) Treatment of mucocutaneous herpes simplex virus infections unresponsive to acyclovir with topical foscarnet cream in AIDS patients: a phase I/II study. J Acquir Immune Defic Syndr 21(4):301–306

    CAS  PubMed  Google Scholar 

  101. 101.

    Lytle CD, Carney PG, Felten RP, Bushar HF, Straight RC (1989) Inactivation and mutagenesis of herpes virus by photodynamic treatment with therapeutic dyes. Photochem Photobiol 50(3):367–371

    CAS  PubMed  Google Scholar 

  102. 102.

    Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74(5):656–669

    CAS  PubMed  Google Scholar 

  103. 103.

    Kvacheva ZB, Shukanova NA, Votyakov VI, Lobanok ES, Vorobei AV, Nikolaeva SN (2003) Photodynamic inhibition of infection caused by drug-resistant variants of herpes simplex virus type I. Bull Exp Biol Med 135(4):384–387

    CAS  PubMed  Google Scholar 

  104. 104.

    Hsi RA, Rosenthal DI, Glatstein E (1999) Photodynamic therapy in the treatment of cancer: current state of the art. Drugs 57(5):725–734

    CAS  PubMed  Google Scholar 

  105. 105.

    Chan Y, Lai CH (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18(1):51–55. doi:10.1007/s10103-002-0243-5

    PubMed  Google Scholar 

  106. 106.

    Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH Jr (1990) Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112(6):416–422

    CAS  PubMed  Google Scholar 

  107. 107.

    Komerik N, Curnow A, MacRobert AJ, Hopper C, Speight PM, Wilson M (2002) Fluorescence biodistribution and photosensitising activity of toluidine blue o on rat buccal mucosa. Lasers Med Sci 17(2):86–92. doi:10.1007/s101030200015

    CAS  PubMed  Google Scholar 

  108. 108.

    Eduardo CP (2010) Laser in contemporary clinical dentistry. In: Fernandes CP (ed) A world class dentistry, FDI 2010. Livraria Santos, Brazil, pp 237–264

    Google Scholar 

  109. 109.

    Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42(4):191–195

    CAS  PubMed  Google Scholar 

  110. 110.

    Meister J (2007) Basic research. In: Gutknecht N (ed) Proceedings of the 1st International Workshop of Evidence Based Dentistry on Lasers in Dentistry. Quintessence, Berlin, pp 3–27

    Google Scholar 

  111. 111.

    Calderhead RG (1991) Simultaneous LLLT in laser surgery: the phenomenon explained. In: Ohshiro T, Calderhead RG (eds) Progress in laser therapy. Wiley, Chichester, pp 209–213

    Google Scholar 

  112. 112.

    Kaufmann R, Hibst R (1990) Pulsed 2.94-microns erbium-YAG laser skin ablation—experimental results and first clinical application. Clin Exp Dermatol 15(5):389–393

    CAS  PubMed  Google Scholar 

  113. 113.

    Hohenleutner U, Hohenleutner S, Baumler W, Landthaler M (1997) Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones. Lasers Surg Med 20(3):242–247. doi:10.1002/(SICI)1096-9101(1997)20:3<242::AID-LSM2>3.0.CO;2-Q

    CAS  PubMed  Google Scholar 

  114. 114.

    Hughes PS, Hughes AP (1998) Absence of human papillomavirus DNA in the plume of erbium:YAG laser-treated warts. J Am Acad Dermatol 38(3):426–428

    CAS  PubMed  Google Scholar 

  115. 115.

    Trevor M (1987) Presence of virus in CO2 laser plumes raises infection concern. Hospital Infection Control 14:166–167

    Google Scholar 

  116. 116.

    Kotlow L (2011) Lasers in pediatric dentistry. In: Convissar RA (ed) Principles and practice of laser dentistry. Mosby, Elsevier, St. Louis, pp 202–224

    Google Scholar 

  117. 117.

    Tunér J, Beck-Kristensen PH (2011) Low-level lasers in dentistry. In: Convissar RA (ed) Principles and practice of laser dentistry. Mosby, Elsevier, St. Louis, pp 263–286

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos de Paula Eduardo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Paula Eduardo, C., Aranha, A.C.C., Simões, A. et al. Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci 29, 1517–1529 (2014). https://doi.org/10.1007/s10103-013-1311-8

Download citation

Keywords

  • Herpes simplex virus
  • HSV-1
  • High-power laser
  • Low-power laser
  • Laser phototherapy
  • Photodynamic therapy