Skip to main content

ST36 laser acupuncture reduces pain-related behavior in rats: involvement of the opioidergic and serotonergic systems

Abstract

Laser acupuncture is a modality of low-level light therapy used as an alternative to needling for the past three decades. Although it has proved effective for the treatment of various conditions, the mechanisms underlying its effects are not fully understood. To contribute to this understanding, this study was designed to (1) evaluate the antinociceptive effect of ST36 laser acupuncture (830 nm, 3 J/cm2) in rat models of acute nociception and (2) to investigate the opioidergic and serotonergic systems involvement in this effect. Our results demonstrate that ST36 laser acupuncture inhibited (36 ± 2 %) acetic acid-induced abdominal constrictions and both neurogenic (48 ± 7 %) and inflammatory (phase IIA 42 ± 8 % and phase IIB 83 ± 6 %) phases of formalin-induced nociceptive behavior. Moreover, the antinociceptive activity of laser irradiation in the acetic acid test was significantly reversed by preadministration of naloxone (1 mg/kg, nonselective opioid receptor antagonist), pindolol (1 mg/kg, subcutaneous; nonselective 5-HT 1A/B receptor antagonist), and ketanserin (1 mg/kg; selective 5-HT2A receptor antagonist) but not by ondansetron (1 mg/kg, selective 5-HT3 receptor antagonist). Taken together, our data demonstrate, for the first time, that (1) ST36 laser acupuncture elicited significant antinociceptive effect against acetic acid- and formalin-induced behavior in rats and that (2) this effect is mediated by activation of the opioidergic and serotonergic (5-HT1 and 5-HT2A receptors) systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27(3):387–393

    Article  PubMed  Google Scholar 

  2. Litscher G (2010) Ten years evidence-based high-tech acupuncture part 3: a short review of animal experiments. Evid Based Complement Alternat Med 7(2):151–155

    Article  PubMed  Google Scholar 

  3. Lorenzini L et al (2009) Laser acupuncture for acute inflammatory, visceral and neuropathic pain relief: an experimental study in the laboratory rat. Res Vet Sci 88(1):159–165

    Article  PubMed  Google Scholar 

  4. Milojevic M, Kuruc V (2003) Laser biostimulation in the treatment of pleurisy. Med Pregl 56(11–12):516–520

    Article  PubMed  Google Scholar 

  5. Nakano J et al (2009) Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Exp Physiol 94(9):1005–1015

    Article  PubMed  CAS  Google Scholar 

  6. Chung TY, Peplow PV, Baxter GD (2010) Laser photobiomodulation of wound healing in diabetic and non-diabetic mice: effects in splinted and unsplinted wounds. Photomed Laser Surg 28(2):251–261

    Article  PubMed  Google Scholar 

  7. Barbosa RI et al (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25(3):423–430

    Article  PubMed  Google Scholar 

  8. Chow RT et al (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  9. Baratto L et al (2010) Ultra-low-level laser therapy. Lasers Med Sci 26(1):103–112

    Article  PubMed  Google Scholar 

  10. Whittaker P (2004) Laser acupuncture: past, present, and future. Lasers Med Sci 19(2):69–80

    Article  PubMed  Google Scholar 

  11. Hsieh CW et al (2011) Different brain network activations induced by modulation and nonmodulation laser acupuncture. Evid Based Complement Alternat Med. doi:10.1155/2011/951258

  12. Baxter GD, Bleakley C, McDonough S (2008) Clinical effectiveness of laser acupuncture: a systematic review. J Acupunct Meridian Stud 1(2):65–82

    Article  PubMed  Google Scholar 

  13. Heller G, Langen PH, Steffens J (2004) Laser acupuncture as third-line therapy for primary nocturnal enuresis. First results of a prospective study. Urologe A 43(7):803–806

    Article  PubMed  CAS  Google Scholar 

  14. Quah-Smith I et al (2010) The brain effects of laser acupuncture in healthy individuals: an FMRI investigation. PLoS One 5(9):e12619

    Article  PubMed  Google Scholar 

  15. Zhang J et al (2008) Effect of laser acupoint treatment on blood pressure and body weight—a pilot study. J Chiropr Med 7(4):134–139

    Article  PubMed  CAS  Google Scholar 

  16. Ilbuldu E et al (2004) Comparison of laser, dry needling, and placebo laser treatments in myofascial pain syndrome. Photomed Laser Surg 22(4):306–311

    Article  PubMed  Google Scholar 

  17. Wong TW, Fung K (1991) Acupuncture: from needle to laser. Fam Pract 8(2):168–170

    Article  PubMed  CAS  Google Scholar 

  18. Li C, Zhen H (2006) Design of the laser acupuncture therapeutic instrument. Conf Proc IEEE Eng Med Biol Soc 1:4107–4110

    PubMed  Google Scholar 

  19. Relf I, Chow R, Pirotta M (2008) Blinding techniques in randomized controlled trials of laser therapy: an overview and possible solution. Evid Based Complement Alternat Med 5(4):383–389

    Article  PubMed  Google Scholar 

  20. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  CAS  Google Scholar 

  21. Medeiros MA et al (2003) c-Fos expression induced by electroacupuncture at the Zusanli point in rats submitted to repeated immobilization. Braz J Med Biol Res 36(12):1673–1684

    Article  PubMed  CAS  Google Scholar 

  22. Jenkins PA, Carrol JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787

    Article  PubMed  Google Scholar 

  23. Koster RA, Beer M (1959) Acetic acid for analgesic screening. Fed Proc 18(412)

  24. Lemberg K et al (2006) Morphine, oxycodone, methadone and its enantiomers in different models of nociception in the rat. Anesth Analg 102(6):1768–1774

    Article  PubMed  CAS  Google Scholar 

  25. Tjolsen A, Hole K (1997) Animal models of analgesia. In: Dickenson ABJ, Besson JM (eds) The pharmacology of pain. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  26. Rojas-Corrales MO et al (2000) Pindolol, a beta-adrenoceptor blocker/5-hydroxytryptamine(1A1B) antagonist, enhances the analgesic effect of tramadol. Pain 88(2):119–124

    Article  PubMed  CAS  Google Scholar 

  27. Yokogawa F et al (2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95(1):163–168

    Article  PubMed  CAS  Google Scholar 

  28. Santos ARS et al (2005) Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacology 48(7):1021–1034

    Article  PubMed  CAS  Google Scholar 

  29. Santos ARS et al (1999) Antinociceptive properties of the new alkaloid, cis-8,10-di-N-propyllobelidiol hydrochloride dihydrate isolated from Siphocampylus verticillatus: evidence for the mechanism of action. J Pharmacol Exp Ther 289(1):417–426

    PubMed  CAS  Google Scholar 

  30. Tjolsen A et al (1992) The formalin test: an evaluation of the method. Pain 51(1):5–17

    Article  PubMed  CAS  Google Scholar 

  31. Duarte ID, Nakamura M, Ferreira SH (1988) Participation of the sympathetic system in acetic acid-induced writhing in mice. Braz J Med Biol Res 21(2):341–343

    PubMed  CAS  Google Scholar 

  32. Chapman CR, Gavrin J (1999) Suffering: the contributions of persistent pain. Lancet 353(9171):2233–2237

    Article  PubMed  CAS  Google Scholar 

  33. Ribeiro RA et al (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387(1):111–118

    Article  PubMed  CAS  Google Scholar 

  34. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30(1):103–114

    Article  PubMed  CAS  Google Scholar 

  35. Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64(2):345–355

    Article  PubMed  CAS  Google Scholar 

  36. Katsoulis J et al (2010) Laser acupuncture for myofascial pain of the masticatory muscles. A controlled pilot study. Schweiz Monatsschr Zahnmed 120(3):213–225

    PubMed  Google Scholar 

  37. Zhao L et al (2010) Validating a nonacupoint sham control for laser treatment of knee osteoarthritis. Photomed Laser Surg 28(3):351–356

    Article  PubMed  Google Scholar 

  38. Cheng K et al (2009) Relationship between laser acupuncture analgesia and the function of mast cells. Zhongguo Zhen Jiu 29(6):478–483

    PubMed  Google Scholar 

  39. Yu W et al (1997) Effects of Photostimulation on wound healing in diabetic mice. Lasers Surg Med 20:56–63

    Article  PubMed  CAS  Google Scholar 

  40. Túner J, Hode L (2004) The laser therapy handbook. Prima Books, Tallinn

    Google Scholar 

  41. Honmura A et al (1993) Analgesic effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageenin-induced inflammation. Lasers Surg Med 13(4):463–469

    Article  PubMed  CAS  Google Scholar 

  42. Bian XP, Yu ZQ, Liu DM (1989) The experiment studies of semiconductor GaAs-laser points irradiation the analgesic effect. Zhen Ci Yan Jiu 14(3):379–382

    PubMed  CAS  Google Scholar 

  43. Walker J (1983) Relief from chronic pain by low power laser irradiation. Neurosci Lett 43(2–3):339–344

    Article  PubMed  CAS  Google Scholar 

  44. Artés-Ribas M, Arnabat-Dominguez J, Puigdollers A (2012) Analgesic effect of a low-level therapy (830 nm) in early orthodontic treatment. Lasers Med Sci. doi:10.1007/s10103-012-1135-y

  45. Hagiwara S et al (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39:797–802

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percy Nohama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erthal, V., da Silva, M.D., Cidral-Filho, F.J. et al. ST36 laser acupuncture reduces pain-related behavior in rats: involvement of the opioidergic and serotonergic systems. Lasers Med Sci 28, 1345–1351 (2013). https://doi.org/10.1007/s10103-012-1260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1260-7

Keywords

  • Nociception
  • Low-level laser therapy
  • Laser acupuncture
  • Opioidergic system
  • Serotonergic system