Skip to main content

Effect of CO2 laser on root caries inhibition around composite restorations: an in vitro study

Abstract

The aim of the present study was to investigate the in vitro effect of CO2 laser on the inhibition of root surface demineralization around composite resin restorations. For this purpose, 30 blocks obtained from human molar roots were divided into three groups: group 1 (negative control), cavity prepared with cylindrical diamond bur + acid etching + adhesive + composite resin restoration; group 2, cavity prepared with cylindrical diamond bur + CO2 laser (5.0 J/cm2) + acid etching + adhesive + composite resin; and group 3, cavity prepared with cylindrical diamond bur + CO2 laser (6.0 J/cm2) + acid etching + adhesive + composite resin. After this procedure, the blocks were submitted to thermal and pH cycling. Root surface demineralization around the restorations was measured by microhardness analysis. The hardness results of the longitudinally sectioned root surface were converted into percentage of mineral volume, which was used to calculate the mineral loss delta Z (ΔZ). The percentage of mineral volume, ΔZ, and the percentage of demineralization inhibition of the groups were statistically analyzed by using analysis of variance and Tukey–Kramer test. The percentage of mineral volume was higher in the irradiated groups up to 80 μm deep. The ΔZ was significantly lower in the irradiated groups than in the control group. The percentage of reduction in demineralization ranged from 19.73 to 29.21 in position 1 (50 μm), and from 24.76 to 26.73 in position 2 (100 μm), when using 6 and 5 J/cm2, respectively. The CO2 laser was effective in inhibiting root demineralization around composite resin restorations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Elderton RJ, Nuttal NM (1983) Variation among dentists in planning treatment. Br Dent J 12:201–206

    Article  Google Scholar 

  2. 2.

    Foster LV (1994) Validity of clinical judgments for the presence of secondary caries associated with defective amalgam restorations. Br Dent J 177:89–93

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Jokastad AJ (1994) The age of restorations in situ. Acta Odontol Scand 52:234–242

    Article  Google Scholar 

  4. 4.

    Mjör IA, Quist V (1997) Marginal failures of amalgam and composite restorations. J Dent 25:25–30

    PubMed  Article  Google Scholar 

  5. 5.

    Creanor SL, Awawdeh LA, Saunders WP, Foye RH, Gilmour WH (1998) The effect of resin-modified glass ionomer restorative material on artificially demineralised dentine caries in vitro. J Dent 26:527–531

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Griffin SO, Griffin PM, Swann JL, Zlobin N (2004) Estimating rates of new root caries in older adults. J Dent Res 83:634–648

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Thompson BA (2004) Your backbone is important to your team. J Okla Dent Assoc 95:26

    PubMed  Google Scholar 

  8. 8.

    Locker D (1996) Incidence of root caries in an older Canadian population. Community Dent Oral Epidemiol 24:403–407

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Hoppenbrouwers PM, Driessens FC, Borggreven JM (1987) The mineral solubility of human tooth roots. Arch Oral Biol 32:319–322

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Fure S, Zickert I (1990) Salivary conditions and cariogenic microorganisms in 55, 65 and 75-year-old Swedish individuals. Scand J Dent Res 98:197–210

    CAS  PubMed  Google Scholar 

  11. 11.

    Boari HGD, Ana PA, Eduardo CP, Powell GL, Zezell DM (2009) Absorption and thermal study of dental enamel when irradiated with Nd:YAG laser with the aim of caries prevention. Laser Phys 19:1463–1469

    CAS  Article  Google Scholar 

  12. 12.

    de Andrade LEH, Lizarelli RFZ, Pelino JEP, Bagnato VS, de Oliveira Jr OB (2007) Enamel caries resistance accidentally irradiated by the Nd:YAG laser. Laser Phys Lett 4:457–463

    Article  Google Scholar 

  13. 13.

    de Andrade LEH, Lizarelli RFZ, Pelino JEP, Bagnato VS, de Oliveira Jr OB (2007) Caries resistance of lased human enamel with Er:YAG laser—morphological and ratio Ca/P analysis. Laser Phys Lett 4:157–162

    Article  Google Scholar 

  14. 14.

    Esteves-Oliveira M, Apel C, Gutknecht N, Velloso WF, Cotrim MEB, Eduardo CP, Zezell DM (2008) Low-fluence CO2 laser irradiation decreases enamel solubility. Laser Phys 18:478–485

    CAS  Article  Google Scholar 

  15. 15.

    Ana PA, Bachmann L, Zezell DM (2006) Laser effects on enamel for caries prevention. Laser Phys 16:865–875

    CAS  Article  Google Scholar 

  16. 16.

    Colucci V, Messias DC, Serra MC, Corona SA, Turssi CP (2012) Fluoride plus CO2 laser against the progression of caries in root dentin. Am J Dent 25:114–117

    PubMed  Google Scholar 

  17. 17.

    Corrêa-Afonso AM, Bachmann L, Almeida CG, Corona SA, Borsatto MC (2012) FTIR and SEM analysis of CO2 laser irradiated human enamel. Arch Oral Biol 57:1153–1158

    PubMed  Article  Google Scholar 

  18. 18.

    Konish N, Fried D, Staninec M, Featherstone JDB (1999) Artificial caries removal and inhibition of artificial secondary caries by pulsed CO2 laser irradiation. Am J Dent 12:213–216

    Google Scholar 

  19. 19.

    Klein ALL, Rodrigues LKA, Eduardo CP, Nobre-dos-Santos M, Cury JA (2005) Caries inhibition around composite restorations by pulsed carbon dioxide laser application. Eur J Oral Sci 113:239–244

    PubMed  Article  Google Scholar 

  20. 20.

    Le CQ, Fried D, Featherstone JDB (2008) Lack of dentin acid resistance following 9.3 mm CO2 laser irradiation. In: Rechmann P, Fried D (eds) Lasers in dentistry XIV. SPIE, San Jose, pp 68430J–68435J

    Chapter  Google Scholar 

  21. 21.

    Featherstone JDB, Le CQ, Hsu D, Manesh S, Fried D (2008) Changes in acid resistance of dentin irradiated by a CW 10.6 mm CO2 laser. In: Rechmann P, Fried D (eds) Lasers in dentistry XIV. SPIE, San Jose, p 684305

    Chapter  Google Scholar 

  22. 22.

    Hossain M, Nakamura Y, Kimura Y, Ito M, Yamada Y, Matsumoto K (1999) Acquired acid resistance of dental hard tissues by CO2 laser irradiation. J Clin Laser Med Surg 17:223–226

    CAS  PubMed  Google Scholar 

  23. 23.

    Nammour S, Renneboog-Squilbin C, Nyssen-Behets C (1992) Increased resistance to artificial caries-like lesion in dentin treated with CO2 laser. Caries Res 26:170–175

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hossain MM, Hossain M, Kimura Y, Kinoshita J, Yamada Y, Matsumoto K (2002) Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg 20:77–82

    PubMed  Article  Google Scholar 

  25. 25.

    Fried D, Ragadio J, Akrivou M, Featherstone JD, Murray MW, Dickenson KM (2001) Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda = 9.6 and 10.6 microm. J Biomed Opt 6:231–238

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Fried D, Zuerlein MJ, Le CQ, Featherstone JDB (2002) Thermal and chemical modification of dentin by 9–11-mm CO2 laser pulses of 5–100-ms duration. Lasers Surg Med 31:275–282

    PubMed  Article  Google Scholar 

  27. 27.

    Souza-Zaroni WC, Freitas ACP, Hanashiro FS, Steiner-Oliveira C, Nobre-dos-Santos M, Youssef MN (2010) Caries resistance of lased human root surface with 10.6 μm CO2 laser—thermal, morphological, and microhardness analysis. Laser Phys 20:1–7

    Article  Google Scholar 

  28. 28.

    Kawasaki K, Featherstone JDB (1997) Effects of collagenase on root demineralization. J Dent Res 76:588–595

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ten Cate JM, Duijsters PPE (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210

    PubMed  Article  Google Scholar 

  30. 30.

    Featherstone JD, ten Cate JM, Shariati M, Arends J (1983) Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res 17:385–391

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Featherstone JDB (2000) Caries detection and prevention with laser energy. Dent Clin North Am 44:955–969

    CAS  PubMed  Google Scholar 

  32. 32.

    Nelson DG, Longebloed WL, Featherstone JDB (1986) Laser irradiation of human dental enamel and dentine. N Z Dent J 82:74–77

    CAS  PubMed  Google Scholar 

  33. 33.

    Nelson DG, Wefel JS, Jongebloed WL, Featherstone JDB (1987) Morphology, histology and crystallography of human dental enamel treated with pulsed low energy infrared laser irradiation. Caries Res 21:411–426

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nelson DG, Shariati M, Glena R, Shields CP, Featherstone JDB (1986) Effect of pulsed low energy infrared laser irradiation on artificial caries-like lesion formation. Caries Res 20:289–299

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Steiner-Oliveira C, Rodrigues LKA, Soares LES, Martin AA, Zezell DM, Nobre-dos-Santos M (2006) Chemical, morphological and thermal effects of 10.6 μm CO2 laser on the inhibition of enamel demineralization. Dent Mater J 25:455–462

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hsu CY, Jordan TH, Dederich DN, Wefel JS (2000) Effects of low energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res 79:1725–1730

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Fox JL, Yu D, Otsuka M, Higuchi WI, Wong J, Powell G (1992) Combined effects of laser irradiation and chemical inhibitors on the dissolution of dental enamel. Caries Res 26:333–339

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Fox JL, Yu D, Otsuka M, Higuchi WI, Wong J, Powell GL (1992) Initial dissolution rate studies on dental enamel after CO2 laser irradiation. J Dent Res 71:1389–1398

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Stern RH, Vahl J, Sognnaes RF (1972) Lased enamel: ultrastructural observations of pulsed carbon dioxide laser effects. J Dent Res 51:455–460

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Featherstone JDB, Barret-Vespone NA, Fried D, Kantorovitz Z, Seka W (1998) CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J Dent Res 77:1397–1403

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Kantorowitz Z, Featherstone JDB, Fried D (1998) Caries prevention by CO2 laser treatment: dependency on the number of pulses used. J Am Dent Assoc 129(5):585–591

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Tange T, Fried D, Featherstone JDB (2000) TEA-CO2 laser inhibition of artificial caries-like lesion progression in primary and permanent tooth enamel. Lasers in Dentistry VI. SPIE 3910:306–313

    Article  Google Scholar 

  43. 43.

    Gao XL, Pan JS, Hsu CY (2006) Laser-fluoride effect on root demineralization. J Dent Res 85:919–923

    PubMed  Article  Google Scholar 

  44. 44.

    LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:108

    Google Scholar 

  45. 45.

    Zuerlein MJ, Fried D, Featherstone JDB (1999) Modeling the modification depth of carbon dioxide laser-treated dental enamel. Lasers Surg Med 25:335–347

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kantola S (1972) Laser-induced effects on tooth structure. IV. A study of changes in the calcium and phosphorus contents in dentine by electron probe microanalysis. Acta Odontol Scand 30:463–474

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lin CP, Lee BS, Kok SH, LanWH TYC, Lin FH (2000) Treatment of tooth fracture by medium energy CO2 laser and DP bioactive glass paste: thermal behavior and phase transformation of human tooth enamel and dentin after irradiation by CO2 laser. J Mater Sci Mater Med 11:373–381

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Yamada MK, Uo M, Ohkawa S, Akasaka T, Watari F (2004) Three dimensional topographic scanning electron microscope and Raman spectroscopic analyses of the irradiation effect on teeth by Nd:YAG, Er: YAG, and CO(2) lasers. J Biomed Mater Res B Appl Biomater 71:7–15

    PubMed  Article  Google Scholar 

  49. 49.

    Fowler BO, Kuroda S (1986) Changes in heated and in laser irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Benelli EM, Serra MC, Rodrigues AL Jr, Cury JA (1993) In situ anticariogenic potential of glass ionomer cement. Caries Res 27:280–284

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hicks MJ (1986) A polarized light and scanning electron microscopic study of sodium-fluoride treated, acid-etched, caries-like lesions of human enamel. Arch Oral Biol 31:653–660

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanessa Christine de Souza-Zaroni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Melo, J.B., Hanashiro, F.S., Steagall, W. et al. Effect of CO2 laser on root caries inhibition around composite restorations: an in vitro study. Lasers Med Sci 29, 525–535 (2014). https://doi.org/10.1007/s10103-012-1259-0

Download citation

Keywords

  • Carbon dioxide laser
  • Root caries
  • Composite resin restorations