Effect of light polymerization time, mode, and thermal and mechanical load cycling on microleakage in resin composite restorations


This study evaluated the effect of polymerization mode and time and thermal and mechanical loading cycling (TMC) on microleakage in composite resin restorations. One hundred and eighty cavities were prepared and randomly divided according to the light curing time (20, 40, or 60 s), modes (quartz–tungsten–halogen (QTH)—420 mW/cm2, LED 2 (2nd degree generation)—1,100 mW/cm2, or LED 3 (3rd degree generation)—700 mW/cm2), and TMC. Following standard restorative procedures, the samples were prepared for analysis in an absorbance spectrophotometer. All results were statistically analyzed using the three-way ANOVA and Tukey test (p ≤ 0.05). The results revealed that the groups QTH and LED 3 submitted to TMC showed higher microleakage than those that were not submitted to TMC. Only for LED 3, 60 s showed higher microleakage than 20 s. For LED 2 and QTH, there were no differences between the times. QTH showed lower microleakage means than LED 2, when photoactivated for 20 s, without TMC. When photoactivated for 60 s, QTH showed lower microleakage means than LED 3, for the groups with or without TMC. It was concluded that TMC, the increase in polymerization time, and the irradiance were factors that may increase the marginal microleakage of class II cavities.

This is a preview of subscription content, access via your institution.


  1. 1.

    Rode KM, Freitas PM, Lloret PR, Powell LG, Turbino ML (2007) Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 5:222–225

    Google Scholar 

  2. 2.

    Lutz E, Krejci I, Oldenburg TR (1986) Elimination of polymerization stresses at the margins of posterior composite resin restorations: a new restorative technique. Quintessence Int 17:777–784

    CAS  PubMed  Google Scholar 

  3. 3.

    Leonard DL, Charlton DG, Roberts HW, Cohen ME (2002) Polymerization efficiency of LED curing lights. J Esthet Restor Dent 14:286–295

    PubMed  Article  Google Scholar 

  4. 4.

    Castro LC, Galvão AC (2004) Comparison of three different preparation methods in the improvement of sealant retention. J Clin Pediatr Dent 28:249–252

    PubMed  Google Scholar 

  5. 5.

    Kubo S, Yokota H, Yokota H, Hayashi Y (2004) The effect of light-curing modes on the microleakage of cervical resin composite restorations. J Dent 32:247–254

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Ferracane JL, Condon JR (1999) In vitro evaluation of the marginal degradation of dental composites under simulated occlusal loading. Dent Mater 15:262–267

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Burgess JO, Walker RS, Porche CJ, Rappold AJ (2002) Light curing—an update. Compend Contin Educ Dent 23:889–892

    PubMed  Google Scholar 

  8. 8.

    Nomoto R (1997) Effect of light wavelength on polymerization of light-cured resins. Dent Mater J 16:60–73

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Davidson CL, Feilzer AJ (1997) Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25:435–440

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL (1995) Influence of light intensity on polymerization shrinkage and integrity of restoration–cavity interface. Eur J Oral Sci 103:322–326

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Yoon TH, Lee YK, Lim BS, Kim CW (2002) Degree of polymerization of resin composites by different light sources. J Oral Rehabil 29:1165–1173

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Price RB, Ehrnford L, Andreou P, Felix CA (2003) Comparison of quartz–tungsten–halogen, light-emitting diode, and plasma arc curing lights. J Adhes Dent 5:193–207

    PubMed  Google Scholar 

  13. 13.

    Rueggeberg F (1999) Contemporary issues in photocuring. Compend Contin Educ Dent Suppl 25:S4–S15

    Google Scholar 

  14. 14.

    Davidson CL, de Gee AJ, Feilzer A (1984) The competition between the composite–dentin bond strength and the polymerization contraction stress. J Dent Res 63:1396–1399

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Jörgensen KD, Itoh K, Munksgaard EC, Asmussen E (1985) Composite wall-to-wall polymerization contraction in dentin cavities treated with various bonding agents. Scand J Dent Res 93:276–279

    PubMed  Google Scholar 

  16. 16.

    Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, Pashley DH (1994) Relationship between surface area for adhesion and tensile bond strength—evaluation of a micro-tensile bond test. Dent Mater 10:236–240

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH (1996) A review of polymerization contraction: the influence of stress development versus stress relief. Op Dent 21:17–24

    CAS  Google Scholar 

  18. 18.

    Castelnuovo J, Tjan AH, Liu P (1996) Microleakage of multi-step and simplified-step bonding systems. Am J Dent 9:245–248

    CAS  PubMed  Google Scholar 

  19. 19.

    Dietschi D, Herzfeld D (1998) In vitro evaluation of marginal and internal adaptation of class II resin composite restorations after thermal and occlusal stressing. Eur J Oral Sci 106:1033–1042

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Christensen RP, Palmer TM, Ploeger BJ, Yost MP (1999) Resin polymerization problems—are they caused by resin curing lights, resin formulations, or both? Compend Contin Educ Dent Suppl 25:S42–S54

    Google Scholar 

  21. 21.

    Caughman WF, Rueggeberg FA, Curtis JW Jr (1995) Clinical guidelines for photocuring restorative resins. J Am Dent Assoc 126:1280–1286

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Pires JA, Cvitko E, Denehy GE, Swift EJ Jr (1993) Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 24:517–521

    CAS  PubMed  Google Scholar 

  23. 23.

    Prati C, Chersoni S, Mongiorgi R (1999) Thickness and morphology of resin-infiltrated dentin layer in young, old and sclerotic dentin. Oper Dent 24:66–72

    CAS  PubMed  Google Scholar 

  24. 24.

    Aguiar FHB, Lazzari CR, Lima DANL, Ambrosano GMB, Lovadino JR (2005) Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res 19:302–306

    PubMed  Article  Google Scholar 

  25. 25.

    Aguiar FHB, Braceiro A, Lima DA, Ambrosano GMB, Lovadino JR (2007) Effect of light curing modes and light curing time on the microhardness of a hybrid composite resin. J Contemp Dent Pract 8:1–8

    PubMed  Google Scholar 

  26. 26.

    Brännström M (1986) The cause of postrestorative sensitivity and its prevention. J Endod 12:475–481

    PubMed  Article  Google Scholar 

  27. 27.

    Cunha Mello FSTC, Feilzer AJ, de Gee AJ, Davidson CL (1997) Sealing ability of light resin bonding systems in a class II restoration after mechanical fatiguing. Dent Mater 13:372–376

    Article  Google Scholar 

  28. 28.

    Abdalla AI, Davidson CL (1996) Effect of mechanical load cycling on the marginal integrity of adhesive class I resin composite restorations. J Dent 24:87–90

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Cardoso PE, Placido E, Moura SK (2002) Microleakage of four simplified adhesive systems under thermal and mechanical stresses. Am J Dent 215:164–168

    Google Scholar 

  30. 30.

    Leibrock A, Degenhart M, Behr M, Rosentritt M, Handel G (1999) In vitro study of the effect of thermo and load-cycling on the bond strength of porcelain repair systems. J Oral Rehabil 26:130–137

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    dos Santos RE, Lima AF, Soares GP, Ambrosano GMB, Marchi GM, Lovadino JR, Aguiar FHB (2011) Effect of preheating resin composite and light-curing units on the microleakage of class II restorations submitted to thermocycling. Oper Dent 36:60–65

    PubMed  Article  Google Scholar 

  32. 32.

    Aguiar FHB, Oliveria TR, Lima DA, Ambrosano GMB, Lovadino JR (2008) Microhardness of different thicknesses of resin composite polymerized by conventional photocuring at different distances. Gen Dent 56:144–148

    Google Scholar 

  33. 33.

    Schneider LF, Pfeifer CS, Consani S, Prahl SA, Ferracane JL (2008) Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater 24:1169–1177

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Meng X, Yoshida K, Atsuta M (2008) Influence of ceramic thickness on mechanical properties and polymer structure of dual-cured resin luting agents. Dent Mater 24:594–599

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Calheiros FC, Daronch M, Rueggeberg FA, Braga RR (2008) Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater 24:1164–1168

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Versluis A, Tantbirojn D, Douglas WH (1998) Do dental composites always shrink toward the light? J Dent Res 77:1435–1445

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Atai M, Watts DC (2006) A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 22:785–791

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Pfeifer CS, Ferracane JL, Sakaguchi RL, Braga RR (2008) Factors affecting photopolymerization stress in dental composites. J Dent Res 87:1043–1047

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Pongprueksa P, Kuphasuk W, Senawongse P (2008) The elastic moduli across various types of resin/dentin interfaces. Dent Mater 24:1102–1106

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Aguiar FHB, Dos Santos AJ, França FM, Paulillo LA, Lovadino JR (2003) A quantitative method of measuring the microleakage of thermocycled or non-thermocycled posterior tooth restorations. Op Dent 2003:793–799

    Google Scholar 

  41. 41.

    Mitsui FH, Peris AR, Cavalcanti AN, Marchi GM, Pimenta LA (2006) Influence of thermal and mechanical load cycling on microtensile bond strengths of total and self-etching adhesive systems. Op Dent 31:240–247

    Article  Google Scholar 

  42. 42.

    Cavalcanti AN, Mitsui FH, Silva F, Peris AR, Bedran-Russo A, Marchi GM (2008) Effect of cyclic loading on the bond strength of class II restorations with different composite materials. Op Dent 33:163–168

    Article  Google Scholar 

  43. 43.

    Emami N, Söderholm KJ (2003) How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci 111:536–542

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Tsai PC, Meyers IA, Walsh LJ (2004) Depth of cure and surface microhardness of composite resin cured with blue LED curing lights. Dent Mater 20:364–369

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Aguiar FH, Santos AJ, Groppo FC, Lovadino JR (2002) Quantitative evaluation of marginal leakage of two resin composite restorations using two filling techniques. Oper Dent 27:475–479

    CAS  PubMed  Google Scholar 

  46. 46.

    Suga S, Kondo M, Onodera A, Kubota Y, Ohtsuka M (1971) Electron microprobe analyses on the distributions of Cl, Mg and Na, in the enamels of various animals. Jpn J Oral Biol 13:85–94

    Article  Google Scholar 

  47. 47.

    Reis AF, Giannini M, Kavaguchi A, Soares CJ, Line SR (2004) Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J Adhes Dent 6:117–121

    CAS  PubMed  Google Scholar 

  48. 48.

    Reeves GW, Fitchie JG, Hembree JH Jr, Puckett AD (1995) Microleakage of new dentin bonding systems using human and bovine teeth. Oper Dent 20:230–235

    CAS  PubMed  Google Scholar 

  49. 49.

    Nakamichi I, Iwaku M, Fusayama T (1983) Bovine teeth as possible substitutes in the adhesion test. J Dent Res 62:1076–1081

    CAS  PubMed  Article  Google Scholar 

Download references


This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant # 06/58377-9).

Author information



Corresponding author

Correspondence to Flávio Henrique Baggio Aguiar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soares, G.P., Ambrosano, G.M.B., Lima, D.A.N.L. et al. Effect of light polymerization time, mode, and thermal and mechanical load cycling on microleakage in resin composite restorations. Lasers Med Sci 29, 545–550 (2014). https://doi.org/10.1007/s10103-012-1244-7

Download citation


  • Resin composite
  • Light curing unit
  • Irradiation time
  • Microleakage