Laser and light-emitting diode effects on pre-osteoblast growth and differentiation

Abstract

The acceleration of bone regeneration by low-intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. The purpose of this study is to compare the effects of light-emitting diode (LED) and laser on pre-osteoblast MC3T3 proliferation and differentiation. Cells were irradiated with red, infrared, and LED (3 and 5 J/cm2). Lasers had a power density of 1 W/cm2 and irradiation time of 2 and 5 s. LED had a power density of 60 mW/cm2 and irradiation time of 50 and 83 s. Control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, and 96 h), and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72 and 96 h and 7 and 14 days). At 24 h, the cell growth was enhanced 3.6 times by LED (5 J/cm2), 6.8 times by red laser (3 J/cm2), and 10.1 times by red laser (5 J/cm2) in relation to control group (p < 0.05). At the other periods, there was no influence of irradiation on cell growth (p > 0.05). The production of ALP was not influenced by irradiation at any period of time (p > 0.05). Low-intensity laser and LED have similar effects on stimulation of cell growth, but no effect on cell differentiation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336

    PubMed  Article  Google Scholar 

  2. 2.

    Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891

    PubMed  Article  Google Scholar 

  3. 3.

    Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265

    PubMed  Article  Google Scholar 

  4. 4.

    Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E (2004) Clinical evaluation of the effects of low intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J Appl Oral Sci 12(2):133–136

    PubMed  Article  Google Scholar 

  6. 6.

    Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35:377–384

    PubMed  Article  Google Scholar 

  7. 7.

    Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526

    PubMed  Article  Google Scholar 

  8. 8.

    Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Haxsen V, Schikora D, Sommer U, Remppis A, Greten J, Kasperk C (2008) Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med Sci 23(4):381–384

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and lower power laser irradiation. Lasers Med Sci 18:95–99

    PubMed  Article  Google Scholar 

  12. 12.

    Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP, Ferreira CV (2008) Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem 22(5–6):497–506

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Sabino LG, de Negreiros LMV, Vollet-filho JD, Ferreira J, Tirapelli DPC, Novais PC, Tirapelli LF, Kurachi C, Bagnato VS (2011) Experimental evidence and model explanation for cell population characteristics modification when applying sequential photodynamic therapy. Las Phys Lett 8(3):239–246

    CAS  Article  Google Scholar 

  14. 14.

    Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146

    PubMed  Article  Google Scholar 

  16. 16.

    Azevedo LH, Eduardo FP, Moreira MS, Eduardo CP, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. A pilot study. Lasers Med Sci 21:86–89

    PubMed  Article  Google Scholar 

  17. 17.

    Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(1):157–165

    CAS  Article  Google Scholar 

  18. 18.

    Souza APC, Santos JN, Reis J Jr, Ramos TA, Souza J, Cangussu MCT, Pinheiro ALB (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28(4):547–552

    PubMed  Article  Google Scholar 

  19. 19.

    McDaniel, Weiss RA, Geronemus MD, Mazur BS, Wilson MS, Weiss MA (2010) Varying ratios of wavelengths in dual wavelength led photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med 42:540–545

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Cankaya AB, Erdem MA, Erdem AP, Erguven M, Aybar B, Kasapoglu C, Bilir A (2011) Evaluation of light-emitting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. Int J Med Sci 8(7):584–593

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222

    PubMed  Article  Google Scholar 

  24. 24.

    Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24(6):909–916

    PubMed  Article  Google Scholar 

  25. 25.

    Quarles LD, Yohay LD, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111(6):1445–1452

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Peng F, Wu H, Zheng Y, Xu X, Yu J (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653

    PubMed  Article  Google Scholar 

  29. 29.

    Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Heitor Marques Honório for statistical analysis. This research was granted by the Fundação de amparo à pesquisa do estado de São Paulo, # 2010/18361-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carla Andreotti Damante.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pagin, M.T., de Oliveira, F.A., Oliveira, R.C. et al. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29, 55–59 (2014). https://doi.org/10.1007/s10103-012-1238-5

Download citation

Keywords

  • Lasers
  • Wound healing
  • Lasers
  • Semiconductor
  • Phototherapy
  • Bone regeneration