Skip to main content

Advertisement

Log in

Low-level laser therapy improves crescentic glomerulonephritis in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) can reduce inflammation in a variety of clinical conditions, including trauma, postherpetic neuralgia, and rheumatoid arthritis. However, the effect of LLLT on internal organs has not been elucidated. The goal of the present study was to investigate the anti-inflammatory effect of daily external LLLT in an animal model of crescentic glomerulonephritis. Crescentic glomerulonephritis was induced in male Wister Kyoto rats by intravenous injection of antibody for glomerular basement membrane (GBM). The rats were irradiated with a low-reactive level diode laser with an infrared wavelength of 830 nm from the shaved skin surface once a day for 14 days (irradiation spot size on the skin surface, 2.27 cm2; power intensity, 880 mW/cm2; irradiation mode, continuous mode; irradiation time, 250 s; energy, 500 J; energy density, 220 J/cm2). After laser irradiation for 14 days, animals were killed, and the extent of inflammation was evaluated. Expression of gene for inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) was assessed by reverse transcription polymerase chain reaction. Crescent formation in glomeruli and infiltration of macrophages and lymphocytes were assessed by histochemical observation. Injection of anti-GBM antibody induced severe glomerulonephritis with crescent formation. Histological observations indicated that LLLT suppressed crescent formation and infiltration of ED1+ macrophages and CD8+ lymphocytes into the glomeruli. LLLT attenuated the levels of IL-1β and TNF-α messenger RNA in the renal cortex. Externally directed LLLT suppresses the activity of rat anti-GBM crescentic glomerulonephritis in rats. LLLT has the potential to be used for direct treatment of glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basford JR, Hallman HO, Sheffield CG et al (1986) Comparison of cold-quartz ultraviolet, low-energy laser, and occlusion in wound healing in a swine model. Arch Phys Med Rehabil 67(3):151–154

    Article  PubMed  CAS  Google Scholar 

  2. Goldman JA, Chiapella J, Casey H et al (1980) Laser therapy of rheumatoid arthritis. Lasers Surg Med 1:93–101

    Article  PubMed  CAS  Google Scholar 

  3. Iijima K, Shimoyama N, Shimoyama M et al (1989) Effect of repeated irradiation of low-power He–Ne laser in pain relief from postherpetic neuralgia. Clin J Pain 5:271–274

    Article  PubMed  CAS  Google Scholar 

  4. Ohta A, Abergel RP, Uitto J (1987) Laser modulation of human immune system: inhibition of lymphocyte proliferation by a gallium-arsenide laser at low energy. Lasers Surg Med 7:199–201

    Article  PubMed  CAS  Google Scholar 

  5. Shimoyama M, Fukuda Y, Shimoyama N et al (1992) Effect of He–Ne laser irradiation on synaptic transmission of the superior cervical sympathetic ganglion in the rat. J Clin Laser Med Surg 10:337–342

    PubMed  CAS  Google Scholar 

  6. Mochizuki-Oda N, Kataoka Y, Cui Y et al (2002) Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett 323:207–210

    Article  PubMed  CAS  Google Scholar 

  7. Gavish L, Perez LS, Reissman P et al (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40:371–378

    Article  PubMed  Google Scholar 

  8. Rizzi C, Mauriz J, Freitas-Correa D et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscles. Lasers Surg Med 38:704–713

    Article  PubMed  Google Scholar 

  9. Zhang L, Zhao J, Kuboyama N et al (2011) Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovial via a chemokine signaling pathway. Lasers Med Sci 26:707–717

    Article  PubMed  Google Scholar 

  10. Pusey CD (2003) Anti-glomerular basement membrane disease. Kidney Int 64(4):1535–1550

    Article  PubMed  Google Scholar 

  11. Nikolic-Paterson DJ, Atkins RC (2001) The role of macrophages in glomerulonephritis. Nephrol Dial Transplant 16:3–7

    Article  PubMed  CAS  Google Scholar 

  12. Takemura T, Yoshioka K, Murakami K (1994) Cellular localization of inflammatory cytokines in human glomerulonephritis. Virchows Arch 424:459–464

    Article  PubMed  CAS  Google Scholar 

  13. Tesch GH, Yang N, Yu H et al (1997) Intrinsic renal cells are the major source of interleukin-1 beta synthesis in normal and diseased rat kidney. Nephrol Dial Transplant 12:1109–1115

    Article  PubMed  CAS  Google Scholar 

  14. Bremer V, Tojo A, Kimura K et al (1997) Role of nitric oxide in rat nephrotoxic nephritis: comparison between inducible and constitutive nitric oxide synthase. J Am Soc Nephrol 8:1712–1721

    PubMed  CAS  Google Scholar 

  15. Kaneko Y, Sakatsume M, Xie Y et al (2003) Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. J Immunol 170:3377–3385

    PubMed  CAS  Google Scholar 

  16. Stambe C, Atkins RC, Hill PA et al (2003) Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int 64:2121–2132

    Article  PubMed  CAS  Google Scholar 

  17. De Borst MH, Prakash J, Melenhorst WB (2007) Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J Pathol 213:219–228

    Article  PubMed  Google Scholar 

  18. Sakai N, Wada T, Furuichi K et al (2002) p38 MAPK phosphorylation and NF-kappa B activation in human crescentic glomerulonephritis. Nephrol Dial Transplant 17:998–1004

    Article  PubMed  CAS  Google Scholar 

  19. Kohda T, Okada S, Hayashi A et al (2004) High nephritogenicity of monoclonal antibodies belonging to IgG2a and IgG2b subclasses in rat anti-GBM nephritis. Kidney Int 66:177–186

    Article  PubMed  CAS  Google Scholar 

  20. Hayakawa T, Iwaki T (2008) A color atlas of sectional anatomy of the rat, international edition. Maruzen Press, Japan

    Google Scholar 

  21. Churg J, Bernstein J, Glassock RJ (1995) Renal disease: classification and atlas of glomerular diseases, 2nd edn. Igaku-Shoin Medical Publishers, New York

    Google Scholar 

  22. Fujinaka H, Yamamoto T, Feng L et al (1997) Crucial role of CD8- positive lymphocytes in glomerular expression of ICAM-1 and cytokines in crescentic glomerulonephritis of WKY rats. J Immunol 158:4978–4983

    PubMed  CAS  Google Scholar 

  23. Taniguchi H, Kojima R, Sade H et al (2007) Involvement of MCP-1 in tubulointerstitial fibrosis through massive proteinuria in anti-GBM nephritis induced in WKY rats. J Clin Immunol 27:409–429

    Article  PubMed  CAS  Google Scholar 

  24. Jiang Q, Detolla L, Singh IS et al (1999) Exposure to febrile temperature upregulates expression of pyrogenic cytokines in endotoxin-challenged mice. Am J Physiol 276:R1653–R1660

    PubMed  CAS  Google Scholar 

  25. Jiang Q, DeTolla L, van Rooijen N et al (1999) Febrile-range temperature modifies early systemic tumor necrosis factor alpha expression in mice challenged with bacterial endotoxin. Infect Immun 67:1539–1546

    PubMed  CAS  Google Scholar 

  26. Piva JA, Abreu EM, Silva Vdos S et al (2011) Effect of low-level laser therapy on the initial stages of tissue repair: basic principles. An Bras Dermatol 86:947–954

    Article  PubMed  Google Scholar 

  27. Le Hir M, Haas C, Marino M et al (1998) Prevention of crescentic glomerulonephritis induced by anti-glomerular membrane antibody in tumor necrosis factor-deficient mice. Lab Investig 78:1625–1631

    PubMed  Google Scholar 

  28. Lan HY, Nikolic-Paterson J, Mu W et al (1995) Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int 47:1303–1309

    Article  PubMed  CAS  Google Scholar 

  29. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  30. Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530

    Article  PubMed  CAS  Google Scholar 

  31. Aki K, Shimizu A, Masuda Y et al (2010) ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis. Am J Physiol Ren Physiol 298:F870–F882

    Article  CAS  Google Scholar 

  32. Silveira PC, Silva LA, Fraga DB et al (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95:89–92

    Article  PubMed  CAS  Google Scholar 

  33. Benedicenti S, Pepe IM, Angiero F et al (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26:451–453

    Article  PubMed  CAS  Google Scholar 

  34. Passarella S, Casamassima E, Molinari S et al (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium–neon laser. FEBS Lett 175:95–99

    Article  PubMed  CAS  Google Scholar 

  35. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome c oxidase respiration by competiting with oxygen at cytochrome c oxidase. FEBS Lett 356:295–298

    Article  PubMed  CAS  Google Scholar 

  36. Borutaite V, Budriunaite A, Brown GC (2000) Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta 1459:405–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. George Plummer for his kind advice on manuscript preparation. This study was supported in part by the Core Research for Evolution Science and Technology (CREST) of Japan Science and Technology (JST), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosky Kataoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 746 kb)

ESM 2

(PDF 116 kb)

ESM 3

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamato, M., Kaneda, A. & Kataoka, Y. Low-level laser therapy improves crescentic glomerulonephritis in rats. Lasers Med Sci 28, 1189–1196 (2013). https://doi.org/10.1007/s10103-012-1229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1229-6

Keywords

Navigation