Skip to main content
Log in

Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript


The treatment of severely atrophied posterior mandibles with standard-diameter root-form implants may present a challenge. Bone reconstructive surgery represents the treatment of choice; however, it may not be accepted by some patients for economic reasons or due to higher morbidity. Computer-aided design/computer-aided manufacturing (CAD/CAM) technologies have recently opened new frontiers in biomedical applications. Selective laser sintering (SLS) is a CAD/CAM technique that allows the fabrication of complex three-dimensional (3D) structures created by computer-generated image-based design techniques. The aim of this study is to present a protocol for the manufacture and clinical use of custom-made SLS titanium blade implants as a non-conventional therapeutic treatment for the prosthetic rehabilitation of extremely atrophied posterior mandibles. Computed tomography datasets of five patients were transferred to a specific reconstruction software, where a 3D projection of the atrophied mandible was obtained, and custom-made endosseous blade implants were designed. The custom-made implants were fabricated with SLS technique, placed in the extremely atrophied posterior (<4 mm width) mandible, and immediately restored with fixed partial restorations. After 2 years of loading, all implants were in function, showing a good esthetic integration. Blade implants can be fabricated on an individual basis as a custom-designed device. This non-conventional approach may represent an option for restoring the atrophied posterior mandible of elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Chiapasco M, Casentini P, Zaniboni M, Corsi E, Anello T (2011) Titanium–zirconium alloy narrow-diameter implants (Straumann RoxolidR) for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clin Oral Implants Res. doi:10.1111/j.1600-0501.2011.02296.x

  2. Mangano C, Mangano F, Shibli JA, Luongo G, De Franco M, Briguglio F, Figliuzzi M, Eccellente T, Rapani C, Piombino M, Macchi A (2012) Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study on 62 patients. Lasers Med Sci 27:181–189

    Article  PubMed  Google Scholar 

  3. Chiapasco M, Casentini P, Zaniboni M (2009) Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 24(suppl):237–259

    PubMed  Google Scholar 

  4. Sohn DS, Bae MS, Heo JU, Park JS, Yea SH, Romanos GE (2011) Retrospective multicenter analysis of immediate provisonalization using one-piece narrow-diameter (3.0 mm) implants. Int J Oral Maxillofac Implants 26:163–168

    PubMed  Google Scholar 

  5. Linkow LI (1968) The blade vent—a new dimension in endosseous implantology. Dent Concepts 11:3–12

    Google Scholar 

  6. Linkow LI, Donath K, Lemons JE (1992) Retrieval analyses of a blade implant after 231 months of clinical function. Implant Dent 1:37–43

    PubMed  CAS  Google Scholar 

  7. Commissionat Y, Poulmaire F (1996) Blade implants: new ideas. Rev Stomatol Chir Maxillofac 97:283–287

    PubMed  CAS  Google Scholar 

  8. Roberts RA (1996) Types, uses, and evaluation of the plate-form implant. J Oral Implantol 22:111–118

    PubMed  CAS  Google Scholar 

  9. Veron C, Chanavaz M (1997) Implant rehabilitation of distal mandibular atrophy using a blade implant. Rev Stomatol Chir Maxillofac 98(Suppl 1):17–22

    PubMed  Google Scholar 

  10. Roberts R (2002) Placement of plate-form implants using osteotomes. J Oral Implantol 28:283–289

    Article  PubMed  Google Scholar 

  11. Strecha J, Jurkovic R, Siebert T, Prachar P, Bartakova S (2010) Fixed bicortical screw and blade implants as a non-standard solution to an edentulous (toothless) mandible. Int J Oral Sci 2:105–110

    Article  PubMed  Google Scholar 

  12. Trisi P, Emanuelli M, Quaranta M, Piattelli A (1993) A light microscopy, scanning electron microscopy and laser scanning microscopy analysis of retrieved blade implants after 7 to 20 years of clinical function. J Periodontol 64:374–378

    Article  PubMed  CAS  Google Scholar 

  13. Proussaefs P, Lozada J (2002) Evaluation of two Vitallium blade-form implants retrieved after 13 and 21 years of function: a clinical report. J Prosthet Dent 87:412–415

    Article  PubMed  Google Scholar 

  14. Di Stefano D, Iezzi G, Scarano A, Perrotti V, Piattelli A (2006) Immediately loaded blade implant retrieved from a man after a 20-year loading period: a histologic and histomorphometric case report. J Oral Implantol 32:171–176

    Article  PubMed  Google Scholar 

  15. van Noort R (2012) The future of dental devices is digital. Dent Mater 28:3–12

    Article  PubMed  Google Scholar 

  16. Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y, Wu G (2010) Computer-assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral Maxillofac Surg 48:105–109

    Article  PubMed  Google Scholar 

  17. Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S, Hollister SJ (2007) Feinberg SE (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robotics Comput Assist Surg 3:207–216

    Article  CAS  Google Scholar 

  18. Mangano F, Cirotti B, Sammons R, Mangano C (2012) Custom-made, root-analogue direct laser metal forming implant: a case report. Lasers Med Sci. doi:10.1007/s10103-012-1134-z

  19. Figliuzzi M, Mangano F, Mangano C (2012) Case report on a novel root analogue dental implant using CT scan and CAD/CAM—selective laser melting technology. Int J Oral Maxillofac Surg 41:858–862

    Article  PubMed  CAS  Google Scholar 

  20. Gittard SD, Narayan RJ (2010) Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices 7:343–356

    Article  PubMed  Google Scholar 

  21. Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 39:182–184

    Article  PubMed  CAS  Google Scholar 

  22. Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100:56–60

    Article  PubMed  Google Scholar 

  23. Traini T, Mangano C, Sammons RL (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24:1525–1533

    Article  PubMed  CAS  Google Scholar 

  24. Shibli JA, Mangano C, d'Avila S, Piattelli A, Pecora G, Mangano F, Onuma T, Ferrari D, Aguilar K, Iezzi G (2010) Influence of direct laser fabrication (DLF) implant topography on type IV bone: a histomorphometric study in humans. J Biomed Mater Res (part A) 93:607–614

    Google Scholar 

  25. Mangano C, Piattelli A, Iezzi G, Mangano F, Raspanti M, Shibli JA, Cassoni A (2011) Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series. Lasers Med Sci 26:133–138

    Article  PubMed  Google Scholar 

  26. Mangano C, Mangano F, Shibli JA, Ricci M, Perrotti V, d'Avila S, Piattelli A (2012) Immediate loading of mandibular overdentures supported by unsplinted direct laser metal forming (DLMF) implants. Results from a 1-year prospective study. J Periodontol 83:70–78

    Article  PubMed  CAS  Google Scholar 

  27. Pavlíková G, Foltán R, Horká M, Hanzelka T, Borunská H, Sedý J (2011) Piezosurgery in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 40:451–7

    Article  PubMed  Google Scholar 

  28. Steflik DE, Sisk AL, Parr GR, Hanes PJ, Lake FT, Brewer P, Horner J, McKinney RV (1992) Correlative transmission electron microscopic and scanning electron microscopic observations of the tissues supporting endosteal blade implants. J Oral Implantol 27:110–120

    Google Scholar 

  29. Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A (2008) Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 36:443–449

    Article  PubMed  Google Scholar 

  30. Kaim AH, Kirsch EC, Alder P, Bucher P, Hammer B (2009) Preoperative accuracy of selective laser sintering (SLS) in craniofacial 3D modeling: comparison with patient CT data. Rofo 181:644–651

    Article  PubMed  CAS  Google Scholar 

Download references


The authors are grateful to Federico Rizzi, CAD engineer, for his help in writing this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Mangano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangano, F., Bazzoli, M., Tettamanti, L. et al. Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible. Lasers Med Sci 28, 1241–1247 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: