Skip to main content

Numerical simulation of endovenous laser treatment of the incompetent great saphenous vein with external air cooling

Abstract

Endovenous laser treatment (ELT) has been proposed as an alternative in the treatment of reflux of the great saphenous vein. Before the procedure, peri-saphenous subcutaneous tumescent saline solution infiltration is usually performed. However, diffusion of this tumescent fluid is rapidly observed and can potentially reduce the efficacy as a heat sink. External skin cooling with cold air was proposed as an alternative solution. The objective of this study is to compare endovenous laser treatment without and with air cooling by realistic numerical simulations. An optical–thermal damage model was formulated and implemented using finite element modeling. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation, and laser-induced injury using the Arrhenius damage model. Parameters, used in clinical procedures, were considered: power, 15 W; pulse duration, 1 s; fiber pull back, 3-mm increments every second; cold air applied in continuous mode during ELT; and no tumescent anesthesia. Simulations were performed for vein locations at 5, 10, and 15 mm in depth, with and without air cooling. For a vein located at 15 mm in depth, no significant difference was observed with and without cooling. For a vein located at 10 mm in depth, surface temperature increase up to 45 °C is observed without cooling. For a vein located at 5 mm, without cooling, temperature increase leads to irreversible damage of dermis and epidermis. Conversely, with air cooling, surface temperature reaches a maximum of 38 °C in accordance with recordings performed on patients. ELT of the incompetent great saphenous vein with external air cooling system is a promising therapy technique. Use of cold air on the skin continuously flowing in the area of laser shot decreased significantly the heat extent and the thermal damage in the perivenous tissues and the skin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Min RJ, Khilnani N, Zimmet SE (2003) Endovenous laser treatment of saphenous vein reflux: long-term results. J Vasc Interv Radiol 14:991–996

    PubMed  Article  Google Scholar 

  2. Boné Salat C (1999) Tratamiento endoluminal de las varices con laser de diodo: estudio preliminar. Rev Patol Vasc 5:35–46

    Google Scholar 

  3. Agus GB, Mancini S, Magi G (2006) The first 1000 cases of Italian Endovenous–laser Working Group (IEWG). Rationale, and long-term outcomes for the 1999–2003 period. Int Angiol 25:209–215

    PubMed  CAS  Google Scholar 

  4. Mundy L, Merlin TL, Fitridge RA, Hiller JE (2005) Systematic review of endovenous laser treatment for varicose veins. Br J Surg 92:1189–1194

    PubMed  Article  CAS  Google Scholar 

  5. Nootheti PK, Cadag KM, Goldman MP (2007) Review of intravascular approaches to the treatment of varicose veins. Dermatol Surg 33:1149–1157, discussion 57

    PubMed  Article  CAS  Google Scholar 

  6. van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239

    PubMed  Article  Google Scholar 

  7. Chang CJ, Chua JJ (2002) Endovenous laser photocoagulation (EVLP) for varicose veins. Lasers Surg Med 31:257–262

    PubMed  Article  Google Scholar 

  8. Goldman MP, Mauricio M, Rao J (2004) Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg 30:1380–1385

    PubMed  Article  Google Scholar 

  9. Min RJ, Zimmet SE, Isaacs MN, Forrestal MD (2001) Endovenous laser treatment of the incompetent greater saphenous vein. J Vasc Interv Radiol 12:1167–1171

    PubMed  Article  CAS  Google Scholar 

  10. Oh CK, Jung DS, Jang HS, Kwon KS (2003) Endovenous laser surgery of the incompetent greater saphenous vein with a 980-nm diode laser. Dermatol Surg 29:1135–1140

    PubMed  Article  Google Scholar 

  11. Proebstle TM, Lehr HA, Kargl A et al (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736

    PubMed  Article  CAS  Google Scholar 

  12. Pannier F, Rabe E, Maurins U (2009) First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology 24:26–30

    PubMed  Article  CAS  Google Scholar 

  13. Soracco JE, Lopez D'Ambola JO (2009) New wavelength for the endovascular treatment of lower limb venous insufficiency. Int Angiol 28:281–288

    PubMed  CAS  Google Scholar 

  14. Vuylsteke ME, Vandekerckhove PJ, De Bo T, Moons P, Mordon S (2010) Use of a new endovenous laser device: results of the 1,500 nm laser. Ann Vasc Surg 24(2):205–211

    PubMed  Article  CAS  Google Scholar 

  15. Doganci S, Demirkilic U (2010) Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg 40:254–259

    PubMed  Article  CAS  Google Scholar 

  16. Hernández-Osma E, Mordon SR, Vokurka J, Trelles MA (2012) A comparative study of the efficacy of endovenous laser treatment of the incompetent great saphenous with external air cooling and without tumescent anesthesia. J Vasc Surg (in press)

  17. Memetoglu ME, Kurtcan S, Kalkan A, Ozel D (2010) Combination technique of tumescent anesthesia during endovenous laser therapy of saphenous vein insufficiency. Interact Cardiovasc Thorac Surg 11:774–777

    PubMed  Article  Google Scholar 

  18. Glowacka K, Orzechowska-Juzwenko K, Bieniek A, Wiela-Hojenska A, Hurkacz M (2009) Optimization of lidocaine application in tumescent local anesthesia. Pharmacol Rep 61:641–653

    PubMed  CAS  Google Scholar 

  19. Noel B (2010) Tumescent local anesthesia. Rev Med Suisse 6:875–878

    PubMed  Google Scholar 

  20. Hernandez-Osma E, Panella-Agusti F, Buil C, Mordon S, Trelles M (2010) Reduccion del tiempo quirurgico y del complicaciones en el tratamiento endovascular con laser. Angiologia 62:146–149

    Article  Google Scholar 

  21. Raulin C, Greve B, Hammes S (2000) Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med 27:404–410

    PubMed  Article  CAS  Google Scholar 

  22. Proebstle TM, Gul D, Kargl A, Knop J (2003) Endovenous laser treatment of the lesser saphenous vein with a 940-nm diode laser: early results. Dermatol Surg 29:357–361

    PubMed  Article  Google Scholar 

  23. Mordon SR, Wassmer B, Zemmouri J (2006) Mathematical modeling of endovenous laser treatment (ELT). Biomed Eng Online 5:26

    PubMed  Article  Google Scholar 

  24. Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265

    PubMed  Article  Google Scholar 

  25. Niemz M (1996) Laser–tissue interactions, fundamentals and applications. Springer, Berlin

    Google Scholar 

  26. Ashley JWM, van Gemert JC (1995) Optical–thermal response of laser-irradiated tissue. Plenum Press, New York

    Google Scholar 

  27. Mohammed Y, Verhey JF (2005) A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online 4:2

    PubMed  Article  Google Scholar 

  28. Firbank MAS, Schweiger M, Delpy DT (1996) An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol 41:767–783

    PubMed  Article  CAS  Google Scholar 

  29. Flock ST PM, Wilson BC, Wynman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissues I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36:1162–1168

    PubMed  Article  Google Scholar 

  30. Hielscher AH, Wang LH, Chance B, Tittel FK, Jacques SL (1995) The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue. Phys Med Biol 40:1975

    Article  Google Scholar 

  31. Madsen SJ, Wilson B, Patterson MS, Park YD, Jacques SL, Hefetz Y (1992) Experimental tests of simple diffusion model for the estimation of scattering and absorption-coefficients of turbid media from time-resolved diffuse reflectance measurements. Appl Opt 31:3509–3517

    PubMed  Article  CAS  Google Scholar 

  32. Okada E, Schweiger M, Arridge SR, Firbank M, Delpy DT (1996) Experimental validation of Monte-Carlo and finite-element methods for the estimation of the optical path-length in inhomogeneous tissues. Appl Opt 35:3362–3371

    PubMed  Article  CAS  Google Scholar 

  33. Star WM (1989) Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry SPIE Institute Series 5. In: Dosimetry of laser radiation in medicine and biology. SPIE Press, Bellingham, pp 146–154

    Google Scholar 

  34. Yoo KM, Liu F, Alfano RR (1990) When does the diffusion approximation fail to describe photon transport in random media? Phys Rev Lett 64:2647

    PubMed  Article  CAS  Google Scholar 

  35. Chance BAR (1995) Optical tomography, photon migration, and spectroscopy of tissue and model media: theory, human studies, and instrumentation, vol 2389. SPIE, Bellingham, Proceedings volume parts 1 and 2

    Book  Google Scholar 

  36. Vuylsteke M, Van Dorpe J, Roelens J, De Be T, Mordon S (2009) Endovenous laser treatment: a morphological study in an animal model. Phlebology 24:166–175

    PubMed  Article  CAS  Google Scholar 

  37. Chang IA (2004) aNU. Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed Eng Online 3:24

    Article  Google Scholar 

  38. Saad YSM (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  Google Scholar 

  39. Marqa MF, Colin P, Nevoux P, Mordon SR, Betrouni N (2011) Focal laser ablation of prostate cancer: numerical simulation of temperature and damage distribution. Biomed Eng Online 10:45

    PubMed  Article  Google Scholar 

  40. Incropera FPDD (1996) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  41. Mordon SR, Wassmer B, Reynaud JP, Zemmouri J (2008) Mathematical modeling of laser lipolysis. Biomed Eng Online 7:10

    PubMed  Article  Google Scholar 

  42. van den Bos RR, Kockaert MA, Martino Neumann HA, Bremmer RH, Nijsten T, van Gemert MJ (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251

    PubMed  Article  Google Scholar 

  43. Chang CW, Reinisch L, Biesman BS (2003) Analysis of epidermal protection using cold air versus chilled sapphire window with water or gel during 810 nm diode laser application. Lasers Surg Med 32:129–136

    PubMed  Article  Google Scholar 

  44. Greve B, Hammes S, Raulin C (2001) The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg 27:633–636

    PubMed  Article  CAS  Google Scholar 

  45. Hammes S, Raulin C (2005) Evaluation of different temperatures in cold air cooling with pulsed-dye laser treatment of facial telangiectasia. Lasers Surgery Med 36:136–140

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Mordon.

Additional information

Mohamad Feras Marqa and Serge Mordon contributed equally to this project and should be considered co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marqa, M.F., Mordon, S., Hernández-Osma, E. et al. Numerical simulation of endovenous laser treatment of the incompetent great saphenous vein with external air cooling. Lasers Med Sci 28, 833–844 (2013). https://doi.org/10.1007/s10103-012-1141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1141-0

  • Keywords
  • Endovenous laser
  • Saphenous vein
  • Finite element method
  • Air cooling