Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial

Abstract

Chronic autoimmune thyroiditis (CAT) is the most common cause of acquired hypothyroidism, which requires lifelong levothyroxine replacement therapy. Currently, no effective therapy is available for CAT. Thus, the objective of this study was to evaluate the efficacy of low-level laser therapy (LLLT) in patients with CAT-induced hypothyroidism by testing thyroid function, thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), and ultrasonographic echogenicity. A randomized, placebo-controlled trial with a 9-month follow-up was conducted from 2006 to 2009. Forty-three patients with a history of levothyroxine therapy for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (830 nm, output power of 50 mW, and fluence of 707 J/cm2; L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). The levothyroxine was suspended 30 days after the LLLT or placebo procedures. Thyroid function was estimated by the levothyroxine dose required to achieve normal concentrations of T3, T4, free-T4 (fT4), and thyrotropin after 9 months of postlevothyroxine withdrawal. Autoimmunity was assessed by measuring the TPOAb and TgAb levels. A quantitative computerized echogenicity analysis was performed pre- and 30 days postintervention. The results showed a significant difference in the mean levothyroxine dose required to treat the hypothyroidism between the L group (38.59 ± 20.22 μg/day) and the P group (106.88 ± 22.90 μg/day, P < 0.001). Lower TPOAb (P = 0.043) and greater echogenicity (P < 0.001) were also noted in the L group. No TgAb difference was observed. These findings suggest that LLLT was effective at improving thyroid function, promoting reduced TPOAb-mediated autoimmunity and increasing thyroid echogenicity in patients with CAT hypothyroidism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Roberts CG, Ladenson PW (2004) Hypothyroidism. Lancet 363:793–803

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Nielsen CH, Hegedus L, Rieneck K, Moeller AC, Leslie RG, Bendtzen K (2007) Production of interleukin (IL)-5 and IL-10 accompanies T helper cell type 1 (Th1) cytokine responses to a major thyroid self-antigen, thyroglobulin, in health and autoimmune thyroid disease. Clin Exp Immunol 147:287–295

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Weetman AP (2004) Autoimmune thyroid disease. Autoimmunity 37:337–340

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Rapoport B, McLachlan SM (2001) Thyroid autoimmunity. J Clin Invest 108:1253–1259

    PubMed  CAS  Google Scholar 

  5. 5.

    Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335:99–107

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Vanderpump MP, Tunbridge WM (2002) Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid 12:839–847

    PubMed  Article  Google Scholar 

  7. 7.

    Padberg S, Heller K, Usadel KH, Schumm-Draeger PM (2001) One-year prophylactic treatment of euthyroid Hashimoto’s thyroiditis patients with levothyroxine: is there a benefit? Thyroid 11:249–255

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gartner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW (2002) Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab 87:1687–1691

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Bonfig W, Gartner R, Schmidt H (2010) Selenium supplementation does not decrease thyroid peroxidase antibody concentration in children and adolescents with autoimmune thyroiditis. Sci World J 10:990–996

    Article  CAS  Google Scholar 

  10. 10.

    Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P (2005) Low level laser therapy (classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev (4):CD002049

  11. 11.

    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    PubMed  Article  Google Scholar 

  12. 12.

    Vidal L, Ortiz M, Perez de Vargas I (2002) Ultrastructural changes in thyroid perifollicular capillaries during normal postnatal development and after infrared laser radiation. Lasers Med Sci 17:187–197

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Parrado C, Carrillo de Albornoz F, Vidal L, Perez de Vargas I (1999) A quantitative investigation of microvascular changes in the thyroid gland after infrared (IR) laser radiation. Histol Histopathol 14:1067–1071

    PubMed  CAS  Google Scholar 

  14. 14.

    Azevedo LH, Aranha AC, Stolf SF, Eduardo Cde P, Vieira MM (2005) Evaluation of low intensity laser effects on the thyroid gland of male mice. Photomed Laser Surg 23:567–570

    PubMed  Article  Google Scholar 

  15. 15.

    Mikhailov VA, Denisov IN, Aleksandrova O, Poliakov AV (1998) The treatment of autoimmune thyroiditis using low-intensity laser radiation. Vopr Kurortol Fizioter Lech Fiz Kult 3:15–16

    PubMed  Google Scholar 

  16. 16.

    Höfling DB, Chavantes MC, Juliano AG, Cerri GG, Romao R, Yoshimura EM, Chammas MC (2010) Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study. Lasers Surg Med 42:589–596

    PubMed  Article  Google Scholar 

  17. 17.

    Duarte GC, Tomimori EK, Camargo RY, Rubio IG, Wajngarten M, Rodrigues AG, Knobel M, Medeiros-Neto G (2009) The prevalence of thyroid dysfunction in elderly cardiology patients with mild excessive iodine intake in the urban area of Sao Paulo. Clinics (Sao Paulo) 64:135–142

    Article  Google Scholar 

  18. 18.

    Nordmeyer JP, Shafeh TA, Heckmann C (1990) Thyroid sonography in autoimmune thyroiditis. A prospective study on 123 patients. Acta Endocrinol (Copenh) 122:391–395

    CAS  Google Scholar 

  19. 19.

    Brunn J, Block U, Ruf G, Bos I, Kunze WP, Scriba PC (1981) Volumetric analysis of thyroid lobes by real-time ultrasound. Dtsch Med Wochenschr 106:1338–1340 (author’s translation)

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Tramalloni J, Monpeyssen H (2006) Thyroïde normale et variants. In: Tramalloni J, Monpeyssen H (eds) Écographie de la thyroïde. Ed Masson, Issy-les-Moulieaux, pp 1–30

    Google Scholar 

  21. 21.

    Loy M, Cianchetti ME, Cardia F, Melis A, Boi F, Mariotti S (2004) Correlation of computerized gray-scale sonographic findings with thyroid function and thyroid autoimmune activity in patients with Hashimoto’s thyroiditis. J Clin Ultrasound 32:136–140

    PubMed  Article  Google Scholar 

  22. 22.

    Mazziotti G, Sorvillo F, Iorio S, Carbone A, Romeo A, Piscopo M, Capuano S, Capuano E, Amato G, Carella C (2003) Grey-scale analysis allows a quantitative evaluation of thyroid echogenicity in the patients with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 59:223–229

    Article  Google Scholar 

  23. 23.

    Schiemann U, Avenhaus W, Konturek JW, Gellner R, Hengst K, Gross M (2003) Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto’s thyroiditis. Med Sci Monit 9:MT13–MT17

    PubMed  Google Scholar 

  24. 24.

    Vitti P (2000) Grey scale thyroid ultrasonography in the evaluation of patients with Graves’ disease. Eur J Endocrinol 142:22–24

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Moher D (1998) CONSORT: an evolving tool to help improve the quality of reports of randomized controlled trials. Consolidated Standards of Reporting Trials. JAMA 279:1489–1491

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bjordal JM, Couppe C, Chow RT, Tuner J, Ljunggren EA (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 49:107–116

    PubMed  Google Scholar 

  27. 27.

    Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127:2048–2057

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Aimbire F, de Lima FM, Costa MS, Albertini R, Correa JC, Iversen VV, Bjordal JM (2009) Effect of low level laser therapy on bronchial hyper-responsiveness. Lasers Med Sci 24:567–576

    PubMed  Article  Google Scholar 

  30. 30.

    Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335

    PubMed  Article  Google Scholar 

  31. 31.

    Mafra de Lima F, Villaverde AB, Salgado MA, Castro-Faria-Neto HC, Munin E, Albertini R, Aimbire F (2010) Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B 101:271–278

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Pires D, Xavier M, Araujo T, Silva JA Jr, Aimbire F, Albertini R (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26:85–94

    PubMed  Article  Google Scholar 

  33. 33.

    Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41:282–290

    PubMed  Article  Google Scholar 

  34. 34.

    Drugarin D, Negru S, Koreck A (1998) Th1 cytokines in autoimmune thyroiditis. Roum Arch Microbiol Immunol 57:309–319

    PubMed  CAS  Google Scholar 

  35. 35.

    Diez JJ, Hernanz A, Medina S, Bayon C, Iglesias P (2002) Serum concentrations of tumour necrosis factor-alpha (TNF-alpha) and soluble TNF-alpha receptor p55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. Clin Endocrinol (Oxf) 57:515–521

    Article  CAS  Google Scholar 

  36. 36.

    Akinci B, Comlekci A, Yener S, Bayraktar F, Demir T, Ozcan MA, Yuksel F, Yesil S (2008) Hashimoto’s thyroiditis, but not treatment of hypothyroidism, is associated with altered TGF-beta1 levels. Arch Med Res 39:397–401

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Karanikas G, Schuetz M, Wahl K, Paul M, Kontur S, Pietschmann P, Kletter K, Dudczak R, Willheim M (2005) Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 63:191–196

    Article  Google Scholar 

  38. 38.

    Rago T, Chiovato L, Grasso L, Pinchera A, Vitti P (2001) Thyroid ultrasonography as a tool for detecting thyroid autoimmune diseases and predicting thyroid dsfunction in apparently healthy subjects. J Endocrinol Investig 24:763–769

    CAS  Google Scholar 

  39. 39.

    Yoshida A, Adachi T, Noguchi T, Urabe K, Onoyama S, Okamura Y, Shigemasa C, Abe K, Mashiba H (1985) Echographic findings and histological feature of the thyroid: a reverse relationship between the level of echo-amplitude and lymphocytic infiltration. Endocrinol Jpn 32:681–690

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Muller HW, Schroder S, Schneider C, Seifert G (1985) Sonographic tissue characterisation in thyroid gland diagnosis. A correlation between sonography and histology. Klin Wochenschr 63:706–710

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Schartinger VH, Galvan O, Riechelmann H, Dudas J (2011) Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer 20:523–529. doi:10.1007/s00520-011-1113-0

    PubMed  Article  Google Scholar 

  42. 42.

    Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42:191–195

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM (2010) Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 20:1253–1261

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Berenice B. Mendonça, Suemi Marui, Noedir A. G. Stolf, Mikiya Muramatsu, Rosangela Itri, and Claudio Leone for their assistance and support in this study. This research project was supported by grants from the “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP), “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), and a fellowship from “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES).

Disclosure of proprietary interests

“I certify that I have no affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the manuscript.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danilo B. Höfling.

Additional information

Clinical trial registration number

NCT01129492

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Höfling, D.B., Chavantes, M.C., Juliano, A.G. et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers Med Sci 28, 743–753 (2013). https://doi.org/10.1007/s10103-012-1129-9

Download citation

Keywords

  • Autoimmunity
  • Hashimoto’s thyroiditis
  • LLLT
  • Thyroid
  • Ultrasound