Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis


The aim of this study was to evaluate the process of bone repair in rats submitted to low-level laser therapy using optical densitometry. A total of 45 rats which underwent femoral osteotomy were randomly distributed into three groups: control (group I) and laser-treated groups using wavelengths in the red (λ, 660–690 nm) and in the infrared (λ, 790–830 nm) spectra (group II and group III, respectively). The animals (five per group) were killed after 7, 14, and 21 days and the femurs were removed for optical densitometry analysis. Optical density showed a significant increase in the degree of mineralization (gray level) in both groups treated with the laser after 7 days. After 14 days, only the group treated with laser therapy in the infrared spectrum showed higher bone density. No differences were observed between groups after 21 days. Such results suggest the positive effect of low-level laser therapy in bone repair is time- and wavelength-dependent. In addition, our results have confirmed that optical densitometry technique can measure bone mineralization status.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Pinheiro ALB, Gerbi MEM, Limeira Júnior FA, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240. doi:10.1007/s10103-008-0556-0

    PubMed  Article  Google Scholar 

  2. 2.

    Liu X, Lyon R, Meier HT, Thometz J, Haworth ST (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25(6):487–494. doi:10.1089/pho.2006.2075

    PubMed  Article  Google Scholar 

  3. 3.

    Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101. doi:10.1089/pho.2006.2030

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Lirani-Galvão AP, Jorgetti V, Da Silva OP (2006) Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Surg 24(6):735–740. doi:10.1089/pho.2006.24.735

    PubMed  Article  Google Scholar 

  5. 5.

    Nicolau RA, Jorgetti V, Rigau J, Pacheco MT, Dos Reis LM, Zângaro RA (2003) Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18:89–94. doi:10.1007/s10103-003-0260-z

    Article  Google Scholar 

  6. 6.

    Karu T (1987) Phobobiological fundamental of low power laser therapy. IEEE J Quantum Electron 23:1703

    Article  Google Scholar 

  7. 7.

    Schindl A, Schindl M, Pernerstorfer-Schön H, Schindl L (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326

    PubMed  CAS  Google Scholar 

  8. 8.

    Nascimento SB, Cardoso CA, Ribeiro TP, Almeida JD, Albertini R, Munin E, Arisawa EA (2010) Effect of low-level laser therapy and calcitonin on bone repair in castrated rats: a densitometric study. Photomed Laser Surg 28(1):45–49. doi:10.1089/pho.2008.2396

    PubMed  Article  Google Scholar 

  9. 9.

    Da Silva RV, Camilli JA (2006) Repair of bone defects treated with autogenous bone graft and low-power laser. J Craniofac Surg 17:297–301

    PubMed  Article  Google Scholar 

  10. 10.

    Freitas IGF, Baranauskas V, Cruz-Höfling MA (2000) Laser effects on osteogenesis. Appl Surf Sci 154–155:548–554

    Article  Google Scholar 

  11. 11.

    Schlager A, Kronberger P, Petschke F, Ulmer H (2000) Low-power laser light in the healing of burns: a comparison between two different wavelengths (635 nm and 690 nm) and a placebo group. Lasers Surg Med 27:39–42. doi:10.1002/1096-9101(2000) 27:1<39::AID-LSM5>3.0.CO;2-4

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Trelles MA, Mayayo E (1987) Bone fracture consolidates faster with low-power laser. Lasers Surg Med 7(1):36–45

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Garavello-Freitas I, Baranauskas V, Joazeiro P, Padovani CR, Dal Pai-Silva M, Da Cruz-Hofling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem B Photobiol 70:81–89. doi:10.1016/S1011-1344(03)00058-7

    Article  CAS  Google Scholar 

  14. 14.

    Karu TI, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem B Photobiol 27:219–223. doi:10.1016/1011-1344(94)07078-3

    Article  CAS  Google Scholar 

  15. 15.

    Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102. doi:10.1002/(SICI)1096-9101(1998) 22:2<97::AID-LSM5>3.0.CO;2-R

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Anneroth G, Hall G, Rydén H, Zetterqvist L (1988) The effect of low-energy infrared laser radiation on wound healing in rats. Br J Oral Maxillofac Surg 26:12–17

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178. doi:10.1089/pho.2006.24.169

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry 69(1):81–90

    PubMed  CAS  Google Scholar 

  19. 19.

    Martínez MEM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317. doi:10.1007/s10103-007-0488-0

    Article  Google Scholar 

  20. 20.

    Queiroga AS, Sousa FB, Araújo JMS, Santos SD, Sousa CD’FS, Quintans TC, Almeida TP, Nonaka CFW, Batista LV, Limeira Junior FA (2008) Evaluation of bone repair in the femur of rats submitted to laser therapy in different wavelengths: an image segmentation method of analysis. Laser Phys 18(9):1087–1091. doi:10.1134/S1054660X08090156

    Article  Google Scholar 

  21. 21.

    Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA (2009) Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci 24:195–201. doi:10.1007/s10103-008-0544-4

    PubMed  Article  Google Scholar 

  22. 22.

    Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie MR (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25(1):73–77. doi:10.1007/s10103-009-0670-7

    Article  Google Scholar 

  23. 23.

    Taba M, Novaes AB, Souza SLS, Grisi MFM, Palioto DB, Pardini LC (2003) Radiographic evaluation of dental implants with different surface treatments: an experimental study in dogs. Implant Dent 12(3):252–258

    Article  Google Scholar 

  24. 24.

    Martins MV, Da Silva MA, Medici Filho E, De Moraes LC, Castilho JC, Da Rocha RF (2005) Evaluation of digital optical density of bone repair in rats medicated with ketoprofen. Braz Dent J 16:207–212

    PubMed  Article  Google Scholar 

  25. 25.

    Sakakura CE, Giro G, Gonçalves D, Pereira RM, Orrico SR, Marcantonio E Jr (2006) Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats. Clin Oral Implants Res 17:134–138

    PubMed  Article  Google Scholar 

  26. 26.

    Gerbi MEM, Pinheiro ALB, Marzola C, Limeira Júnior FA, Ramalho LMP, Ponzi EAC, Soares AO, Carvalho LCB, Lima HV, Gonçalves TO (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23(4):382–388. doi:10.1089/pho.2005.23.382

    PubMed  Article  Google Scholar 

  27. 27.

    Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332. doi:10.1111/j.1600-0501.2004.00994.x

    PubMed  Article  Google Scholar 

  28. 28.

    Coombe AR, Ho C-TG, Philips JR, Chapple CC, Yum LWP, Darendeliler MA, Junter N (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthop Res 4:3–14. doi:10.1034/j.1600-0544.2001.040102.x

    Article  Google Scholar 

  29. 29.

    Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16(3):331–342. doi:10.1002/lsm.1900160404

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Javadieh F, Bayat M, Abdi S, Mohsenifar Z, Razi S (2009) The effects of infrared low-level laser therapy on healing of partial osteotomy of tibia in streptozotocin-induced diabetic rats. Photomed Laser Surg 27(4):641–646. doi:10.1089/pho.2008.2370

    PubMed  Article  Google Scholar 

Download references


R.A. Souza thanks Fundação de Amparo a Pesquisa do Estado de Minas Gerais for the research grant support (APQ-02900-10).

Author information



Corresponding author

Correspondence to Renato Aparecido de Souza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barbosa, D., de Souza, R.A., Xavier, M. et al. Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28, 651–656 (2013). https://doi.org/10.1007/s10103-012-1125-0

Download citation


  • Laser biomodulation
  • Digital radiography
  • Bone defects
  • Rats