Skip to main content

Advertisement

Log in

Mechanical properties of composite resins light-cured using a blue DPSS laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Lasers have many favorable features as a light source owing to their monochromaticity and coherence. This study examined the mechanical properties of composite resins that were light-cured using a diode-pumped solid state (DPSS) laser. Eight composite resins were light-cured using four different light sources (one quartz–tungsten–halogen (QTH), two light-emitting diodes (LEDs), and one DPSS laser with a wavelength of 473 nm). The light intensity of the DPSS laser and remaining light-curing units were approximately 500 and 900 mW/cm2, respectively. The microhardness, flexural properties, and compressive properties were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. In most cases, the microhardness, flexural properties, and compressive properties of the specimens light-cured using the DPSS laser were similar to those obtained using the other light-curing units. Within the limits of the study, the microhardness, flexural modulus, and compressive strength were linearly correlated with the filler content (in weight percent). The flexural modulus and compressive modulus were also linearly correlated with the microhardness. Even with a much lower light intensity, the DPSS laser with a wavelength of 473 nm can polymerize composite resins and give comparable mechanical properties to those obtained using the other light-curing units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318

    Article  PubMed  CAS  Google Scholar 

  2. Braga RR, Ferracane JL (2004) Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med 15:176–184

    Article  PubMed  CAS  Google Scholar 

  3. Manhart J, Kunzelmann KH, Chen HY, Hickel R (2000) Mechanical properties of new composite restorative materials. J Biomed Mater Res 53:353–361

    Article  PubMed  CAS  Google Scholar 

  4. Moszner N, Salz U (2001) New developments of polymeric dental composites. Prog Polym Sci 26:535–576

    Article  CAS  Google Scholar 

  5. Mitra SB, Wu D, Holmes BN (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390

    PubMed  CAS  Google Scholar 

  6. de Moraes RR, Gonçalves Lde S, Lancellotti AC, Consani S, Correr-Sobrinho L, Sinhoreti MA (2009) Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Oper Dent 34:551–557

    Article  PubMed  Google Scholar 

  7. Peris AR, Mitsui FH, Amaral CM, Ambrosano GM, Pimenta LA (2005) The effect of composite type on microhardness when using quartz-tungsten-halogen (QTH) or LED lights. Oper Dent 30:649–654

    PubMed  Google Scholar 

  8. Ramp LC, Broome JC, Ramp MH (2006) Hardness and wear resistance of two resin composites cured with equivalent radiant exposure from a low irradiance LED and QTH light-curing units. Am J Dent 19:31–36

    PubMed  Google Scholar 

  9. Archegas LR, Caldas DB, Rached RN, Vieira S, Souza EM (2008) Sorption and solubility of composites cured with quartz-tungsten-halogen and light emitting diode light-curing units. J Contemp Dent Pract 9:73–80

    PubMed  Google Scholar 

  10. Santos GB, Medeiros IS, Fellows CE, Muench A, Braga RR (2007) Composite depth of cure obtained with QTH and LED units assessed by microhardness and micro-Raman spectroscopy. Oper Dent 32:79–83

    Article  PubMed  Google Scholar 

  11. El-Mowafy O, El-Badrawy W, Wasef M, Omar H, Kermanshahi S (2007) Efficacy of new LED light-curing units in hardening of class II composite restorations. J Can Dent Assoc 73:253

    PubMed  Google Scholar 

  12. Mobarak E, Elsayad I, Ibrahim M, El-Badrawy W (2009) Effect of LED light-curing on the relative hardness of tooth-colored restorative materials. Oper Dent 34:65–71

    Article  PubMed  Google Scholar 

  13. Soares LE, Martin AA, Pinheiro AL, Pacheco MT (2004) Vicker’s hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp. J Biomed Opt 9:601–608

    Article  PubMed  CAS  Google Scholar 

  14. Rode KM, de Freitas PM, Lloret PR, Powell LG, Turbino ML (2009) Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 24:87–92

    Article  PubMed  Google Scholar 

  15. Kwon YH, Jang CM, Shin DH, Seol HJ, Kim HI (2008) The applicability of DPSS laser for light curing of composite resins. Lasers Med Sci 23:407–414

    Article  PubMed  Google Scholar 

  16. Habbersett RC, Naivar MA, Woods TA, Goddard GR, Graves SW (2007) Evaluation of a green laser pointer for flow cytometry. Cytometry A 71:809–817

    PubMed  Google Scholar 

  17. Kapoor V, Karpov V, Linton C, Subach FV, Verkhusha VV, Telford WG (2008) Solid state yellow and orange lasers for flow cytometry. Cytometry A 73:570–577

    PubMed  Google Scholar 

  18. Rueggeberg FA, Eagle JW, Mettenburg DJ (2000) Polymerization depths of contemporary light-curing units using microhardness. J Esthet Dent 12:340–349

    Article  PubMed  CAS  Google Scholar 

  19. ISO 4049 (2000) Dentistry-polymer-based filling, restorative and luting materials. International Organization for Standardization, Geneva

    Google Scholar 

  20. Price RB, Felix CA (2009) Effect of delivering light in specific narrow bandwidths from 394 to 515 nm on the micro-hardness of resin composites. Dent Mater 25:899–908

    Article  PubMed  CAS  Google Scholar 

  21. Emami N, Söderholm KJ (2005) Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins. J Mater Sci Mater Med 16:47–52

    Article  PubMed  CAS  Google Scholar 

  22. Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC (2005) Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent 33:525–532

    Article  PubMed  CAS  Google Scholar 

  23. Braem M, Finger W, Van Doren WE, Lambrechts P, Vanherle G (1989) Mechanical properties and filler fraction of dental composites. Dent Mater 5:346–349

    Article  PubMed  CAS  Google Scholar 

  24. Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649

    Article  PubMed  CAS  Google Scholar 

  25. Chung SM, Yap AUJ, Tsai KT, Yap FL (2005) Elastic modulus of resin-based dental restorative materials: a microindentation approach. J Biomed Mater Res B 72:246–253

    CAS  Google Scholar 

  26. Kinney JH, Marshall SJ, Marshall GW (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14:13–29

    Article  PubMed  CAS  Google Scholar 

  27. Tantbirojn D, Versluis A, Cheng YS, Douglas WH (2003) Fracture toughness and microhardness of a composite: do they correlate? J Dent 31:89–95

    Article  PubMed  CAS  Google Scholar 

  28. Anusavice KJ (2003) Phillips’ science of dental materials, 11th edn. Saunders, Philadelphia

    Google Scholar 

  29. Powers JM, Sakaguchi RL (2006) Craig’s restorative dental materials, 12th edn. Mosby, St. Louis

    Google Scholar 

  30. St Germain H, Swartz ML, Phillips RW, Moore BK, Roberts TA (1985) Properties of microfilled composite resins as influenced by filler content. J Dent Res 64:155–160

    Article  PubMed  CAS  Google Scholar 

  31. Rodrigues SA Jr, Scherrer SS, Ferracane JL, Della Bona A (2008) Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater 24:1281–1288

    Article  PubMed  CAS  Google Scholar 

  32. Lien W, Vandewalle KS (2010) Physical properties of a new silorane-based restorative system. Dent Mater 26:337–344

    Article  PubMed  CAS  Google Scholar 

  33. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–38

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hoon Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, DM., Park, JK., Son, SA. et al. Mechanical properties of composite resins light-cured using a blue DPSS laser. Lasers Med Sci 28, 597–604 (2013). https://doi.org/10.1007/s10103-012-1117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1117-0

Keywords

Navigation