Skip to main content
Log in

Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berger JW (1998) Erbium-YAG laser ablation: the myth of 1-micron penetration. Arch Ophthalmol 116:830–831

    Article  PubMed  CAS  Google Scholar 

  2. Berger JW, D'Amico DJ (1997) Modeling of erbium:YAG laser-mediated explosive photovaporization: implications for vitreoretinal surgery. Ophthalmic Surg Lasers 28:133–139

    PubMed  CAS  Google Scholar 

  3. Binder S, Stolba U, Kellner L, Krebs I (2000) Erbium:YAG laser vitrectomy: clinical results. Am J Ophthalmol 130:82–86

    Article  PubMed  CAS  Google Scholar 

  4. Brazitikos PD, D'Amico DJ, Bernal MT, Walsh AW (1995) Erbium:YAG laser surgery of the vitreous and retina. Ophthalmology 102:278–290

    PubMed  CAS  Google Scholar 

  5. Payne BP, Nishioka NS, Mikic BB, Venugopalan V (1998) Comparison of pulsed CO2 laser ablation at 10.6 mu m and 9.5 mu m. Lasers Surg Med 23:1–6

    Article  PubMed  CAS  Google Scholar 

  6. Venugopalan V, Nishioka NS, Mikic BB (1996) Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation. Biophys J 71:3530–3530

    Article  Google Scholar 

  7. Walsh JT, Deutsch TF (1989) Pulsed CO2-laser ablation of tissue – effect of mechanical properties. IEEE Trans Biomed Eng 36:1195–1201

    Article  PubMed  Google Scholar 

  8. Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF (1988) Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 8(2):108–118

    Article  PubMed  Google Scholar 

  9. Wang XG, Ishizaki NT, Matsumoto K (2005) Healing process of skin after CO2 laser ablation at low irradiance: a comparison of continuous-wave and pulsed mode. Photomed Laser Surg 23:20–26

    Article  PubMed  CAS  Google Scholar 

  10. Wolbarsht ML (1984) Laser surgery: CO2 or HF. IEEE J Quantum Electron 20:1427–1432

    Article  Google Scholar 

  11. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  PubMed  CAS  Google Scholar 

  12. Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, et al (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371:416–419

    Article  PubMed  CAS  Google Scholar 

  13. Edwards GS, Hutson MS, Hauger S (2002) Heat diffusion and chemical kinetics in Mark-III FEL tissue ablation. Proc SPIE 4633:184–193

    Article  Google Scholar 

  14. Edwards G, Hutson MS, Hauger S, Kozub JA, Shen J-H, Shieh C, Topadze K, Joos K (2002) Comparison of OPA and Mark-III FEL for tissue ablation at 6.45 μm. Proc SPIE 4633:194–201

    Article  Google Scholar 

  15. Edwards GS, Austin RH, Carroll FE, Copeland ML, Couprie ME, Gabella WE, Haglund RF, Hooper BA, Hutson MS, Jansen ED, et al (2003) Free electron laser based biophysical and biomedical instrumentation. Rev Sci Instrum 74:3207–3245

    Article  CAS  Google Scholar 

  16. Ellis DL, Weisberg NK, Chen JS, Stricklin GP, Reinisch L (1999) Free electron laser wavelength specificity for cutaneous contraction. Lasers Surg Med 25:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Joos KM, Edwards GS, Shen J-H (1996) Free electron laser (FEL) laser-tissue interaction with human cornea and optic nerve. Proc SPIE 2673:89–92

    Article  Google Scholar 

  18. Robbins J, Reinisch L, Ellis D (2003) Wound healing of 6.45-mu-m free electron laser skin incisions with heat-conducting templates. J Biomed Opt 8:594–600

    Article  PubMed  Google Scholar 

  19. Jansen ED, Copeland M, Edwards GS, Gabella W, Joos K, Mackanos MA, Shen JH, Uhlhorn SR (2003) Applications: case studies: medical: therapeutic applications: free-electron laser. In: Webb CE, Jones JDC (eds) Handbook of laser technology and applications, vol. 3: applications. Institute of Physics Publishing, London

    Google Scholar 

  20. Joos KM, Mawn L, Shen JH, Jansen ED, Casagrande VA (2002) Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report. Proc SPIE 4611:81–85

    Article  Google Scholar 

  21. Joos KM, Shen JH, Shetlar DJ, Casagrande VA (2000) Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL). Lasers Surg Med 27:191–205

    Article  PubMed  CAS  Google Scholar 

  22. Reinisch L, Mendenhall M, Charous S, Ossoff RH (1994) Computer-assisted surgical techniques using the Vanderbilt free electron laser. Laryngoscope 104:1323–1329

    Article  PubMed  CAS  Google Scholar 

  23. Mackanos MA, Kozub JA, Hachey DL, Joos KM, Ellis DL, Jansen ED (2005) The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects. Phys Med Biol 50:1885–1899

    Article  PubMed  Google Scholar 

  24. Mackanos MA, Kozub JA, Jansen ED (2005) The effect of free electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics. Phys Med Biol 50:1871–1883

    Article  PubMed  Google Scholar 

  25. Catella GC, Eckardt RC, Shori RK, Stenger TT, Dew RW (2002) IR laser/OPO systems for biomedical and chemical sensing. IEEE, LEOS 2:504–505

    Google Scholar 

  26. Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS (2011) Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed Opt Express 2:1275–1281

    Article  PubMed  Google Scholar 

  27. Mackanos MA, Jansen ED, Soldatov AN, Haglund RF, Ivanov B (2004) Ablation of soft tissue at 6.45 μm using a strontium vapor laser. Proc SPIE 5319:201–208

    Article  Google Scholar 

  28. Pan BL, Chen G, Zhong JW, Yao ZX (2003) Emission of laser pulses due to transitions from metastable to metastable levels in strontium vapor. Appl Phys B 76:371–374

    Article  CAS  Google Scholar 

  29. Pan BL, Yao ZX, Chen G (2002) A discharge-excited SrBr2 vapour laser. Chin Phys Lett 19:941–943

    Article  Google Scholar 

  30. Platonov AV, Soldatov AN, Filonov AG (1978) Pulsed strontium vapor laser. Sov J Quantum Electron 8:120–121

    Article  Google Scholar 

  31. Platonov AV, Soldatov AN, Filonov AG (1978) Strontium-vapor pulsed laser. Kvantovaya Elektronika 5:198–201

    CAS  Google Scholar 

  32. Shori RK, Satsudd OM, Prasad NS, Catella G (2000) High energy AgGaSe2 optical parametric oscillator operating in 5.7-7 μm region. In: Optical Society of America. Nonlinear optics: materials, fundamentals, and applications, 2000. Technical digest. Optical Society of America, Washington DC, pp 179–181

    Google Scholar 

  33. Vodopyanov KL, Ganikhanov F, Maffetone JP, Zwieback I, Ruderman W (2000) ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability. Opt Lett 25:841–843

    Article  PubMed  CAS  Google Scholar 

  34. Mackanos MA, Simanovskii D, Joos KM, Schwettman HA, Jansen ED (2007) Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL). Lasers Surg Med 39:230–236

    Article  PubMed  Google Scholar 

  35. Brau CA (1990) Free electron lasers. Academic Press, Boston

    Google Scholar 

  36. Kozub JA, Mackanos MA, Mendenhall MH, Jansen ED (2004) Effect of micropulse duration on tissue ablation using a stretched free electron laser pulse train. Proc SPIE 5340:87–95

    Article  Google Scholar 

  37. Ganikhanov F, Caughey T, Vodopyanov KL (2001) Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator. J Opt Soc Am B 18:818–822

    Article  CAS  Google Scholar 

  38. Todd MW, Provencal RA, Owano TG, Paldus BA, Kachanov A., Vodopyanov KL, et al (2002) Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator. Appl Phys B 75:367–376

    Article  CAS  Google Scholar 

  39. Khosrofian JM, Garetz BA (1983) Measurement of a Gaussian laser-beam diameter through the direct inversion of knife-edge data. Appl Opt 22:3406–3410

    Article  PubMed  CAS  Google Scholar 

  40. Cain C, Noojin G, Manning L (1996) A comparison of various probit methods for analyzing yes/no data on a log scale. United States Air Force Armstrong Laboratory, Occupational Environmental Health Directorate, Optical Radiation Division, Brooks Air Force Base, TX

  41. Nahen K, Vogel A (2002) Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation. J Biomed Opt 7:165–178

    Article  PubMed  Google Scholar 

  42. Le Drogoff B, Vidal F, Laville S, Chaker M, Johnston T, Barthélemy O, Margot J, Sabsabi M (2005) Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl Opt 44:278–281

    Article  PubMed  Google Scholar 

  43. Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tunnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Duco Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackanos, M.A., Simanovskii, D.M., Contag, C.H. et al. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL). Lasers Med Sci 27, 1213–1223 (2012). https://doi.org/10.1007/s10103-011-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1048-1

Keywords

Navigation