Abstract
Low-intensity laser therapy (LILT) has been considered as a treatment modality in diabetic distal symmetric polyneuropathy (DSP). The aim of this study is to determine the effectiveness of LILT on DSP. We examined 107 subjects with type 2 diabetes for detection of DSP using the Michigan Neuropathy Screening Instrument (MNSI). Seventeen subjects were eligible to be enrolled in the study. Nerve conduction studies (NCS) were performed in all eligible subjects as an objective method to confirm neuropathy. The participants received LILT three times a week for ten sessions. NCSs were reevaluated after completion of the treatment. The absolute changes in NCS parameters were considered to establish the effectiveness of the treatment. Baseline demographics were similar in all participants. The mean differences of NCV parameters were considered for comparison. At the end of the study, the subjects showed a significant increase in neural potential amplitudes (p < 0.05). This study clearly demonstrated a significant positive effect of LILT on improvement of nerve conduction velocity on diabetic distal symmetric polyneuropathy (DSP). This finding supports the therapeutic potential of LILT in DSP.
Similar content being viewed by others
References
Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, Wilson DM, O’Brien PC, Melton LJr, Service FJ (1993) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43(4):817–824
Llewelyn JG, Tomlinson DR, Thomas PK (2005) Diabetic neuropathies. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier, Philadelphia, pp 1951–1992
Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962
Davies M, Brophy S, Williams R, Taylor A (2006) The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29(7):1518–1522. doi:10.2337/dc05-2228
Pfeifer MA, Ross DR, Schrage JP, Gelber DA, Schumer MP, Crain GM, Markwell SJ, Jung S (1993) A highly successful and novel model for treatment of chronic painful diabetic peripheral neuropathy. Diabetes Care 16(8):1103–1115
Carrington A, Shaw JE, Van Schie CH, Abbott CA, Vileikyte L, Boulton AJ (2002) Can motor nerve conduction velocity predict foot problems in diabetic subjects over a 6-year outcome period? Diabetes Care 25(11):2010–2015
American Diabetes Association (1995) Standardized measures in diabetic neuropathy (Consensus Statement). Diabetes care 18(suppl 1):59–81
Diabetic polyneuropathy in controlled clinical trials: Consensus Report of the Peripheral Nerve Society (1995). Ann Neurol 38 (3):478–482. doi:10.1002/ana.410380323
The Capsaicin Study Group (1991) Treatment of painful diabetic neuropathy with topical capsaicin: a multicenter, double-blind, vehicle-controlled study. Arch Intern Med 151:2225–2229
Zinman LH, Ngo M, Ng ET, Nwe KT, Gogov S, Bril V (2004) Low-intensity laser therapy for painful symptoms of diabetic sensorimotor polyneuropathy: a controlled trial. Diabetes Care 27(4):921–924
Michigan Diabetes Research and Training Center (2011) Survey Instrument. http://www.med.umich.edu/mdrtc/profs/survey.html Accessed 29 April 2011
Asad A, Hameed MA, Khan UA, Butt MU, Ahmed N, Nadeem A (2009) Comparison of nerve conduction studies with diabetic neuropathy symptom score and diabetic neuropathy examination score in type-2 diabetics for detection of sensorimotor polyneuropathy. J Pak Med Assoc 59(9):594–598
Vinik AI, Mitchell BD, Leichter SB, Wagner AL, O’Brian JT, Georges LP (1995) Epidemiology of the Complications of Diabetes. In: Leslie RDGRD (ed) Diabetes: Clinical Science in Practice. Cambridge University Press, Cambridge, pp 221–287
Holzer SECA, Martens L, Cuerdon T, Crystal P, Zagari M (1998) Costs and duration of care for lower extremity ulcers in patients with diabetes. Clin Ther 20:169–181
Slyke M (2000) Painful peripheral diabetic neuropathy: therapeutic approaches. Consult Pharm 15:544–555
Kannan V (2000) review Molecular mechanisms of diabetic neuropathy. Int J Diab Dev Countries 20:101–103
Schroder S, Liepert J, Remppis A, Greten JH (2007) Acupuncture treatment improves nerve conduction in peripheral neuropathy. Eur J Neurol 14(3):276–281. doi:10.1111/j.1468-1331.2006.01632.x
Wang G. Low Level Laser Therapy (LLLT): Technology Assessment (2004) Office of the Medical Director, Department of Labor and Industries. http://www.lni.wa.gov/claimsins/files/omd/lllttechassessmay032004.pdf. Accessed 29 April 2011
Hopkins JT, McLoda TA, Seegmiller JG, David Baxter G (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39(3):223–229
Oron A, Oron U, Streeter J, de Taboada L, Alexandrovich A, Trembovler V, Shohami E (2007) Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24(4):651–656. doi:10.1089/neu.2006.0198
Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose-Response 7(4):358–383. doi:10.2203/dose-response.09-027.Hamblin
Perić Z, Cvetković B (2006) Electrophysiological evaluation of low-intensity laser therapy in patients with diabetic polyneuropathy. FACTA UNIVERSITATIS Series: Medicine and Biology 13(1):11–14
Hawkins D, Houreld N, Abrahamse H (2005) Low-level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci 1056:486–493. doi:10.1196/annals.1352.040
Kreisler MB, Haj HA, Noroozi N, Willershausen B (2004) Efficacy of low-level laser therapy in reducing postoperative pain after endodontic surgery—a randomized double blind clinical study. Int J Oral Maxillofac Surg 33(1):38–41
Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ (2003) Efficacy of low-power laser therapy and exercise on pain and functions in chronic low back pain. Lasers Surg Med 32(3):233–238. doi:10.1002/lsm.10134
Enwemeka CSPJ, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329
Simunovic Z (1996) Low-level laser therapy with trigger points technique: a clinical study on 243 patients. J Clin Laser Med Surg 14(4):163–167
Morshedi H (2009) Low-level laser therapy (LLLT) for chronic low back pain (LBP). Eur J Sci Res 29(1):76–81
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khamseh, M.E., Kazemikho, N., Aghili, R. et al. Diabetic distal symmetric polyneuropathy: Effect of low-intensity laser therapy. Lasers Med Sci 26, 831–835 (2011). https://doi.org/10.1007/s10103-011-0977-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10103-011-0977-z