Skip to main content

Advertisement

Log in

Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Selecting the most representative site for biopsy is crucial in establishing a definitive diagnosis of oral epithelial dysplasia. The current process involves clinical examination that can be subjective and prone to sampling errors. The aim of this study was therefore to investigate the use of optical coherence tomography (OCT) for differentiation of normal and dysplastic oral epithelial samples, with a view to developing an objective and reproducible approach for biopsy site selection. Biopsy samples from patients with fibro-epithelial polyps (n = 13), mild dysplasia (n = 2), and moderate/severe dysplasia (n = 4) were scanned at 5-μm intervals using an OCT microscope and subsequently processed and stained with hematoxylin and eosin (H&E). Epithelial differentiation was measured from the rate of change (gradient) of the backscattered light intensity in the OCT signal as a function of depth. This parameter is directly related to the density of optical scattering from the cell nuclei. OCT images of normal oral epithelium showed a clear delineation of the mucosal layers observed in the matching histology. However, OCT images of oral dysplasia did not clearly identify the individual mucosal layers because of the increased density of abnormal cell nuclei, which impeded light penetration. Quantitative analysis on 2D-OCT and histology images differentiated dysplasia from normal control samples. Similar analysis on 3D-OCT datasets resulted in the reclassification of biopsy samples into the normal/mild and moderate/severe groups. Quantitative differentiation of normal and dysplastic lesions using OCT offers a non-invasive objective approach for localizing the most representative site to biopsy, particularly in oral lesions with similar clinical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Epstein JB, Sciubba J, Silverman S Jr, Sroussi HY (2007) Utility of toluidine blue in oral premalignant lesions and squamous cell carcinoma: continuing research and implications for clinical practice. Head Neck 29(10):948–958

    Article  PubMed  Google Scholar 

  2. Epstein JB, Silverman S Jr, Epstein JD, Lonky SA, Bride MA (2008) Analysis of oral lesion biopsies identified and evaluated by visual examination, chemiluminescence and toluidine blue. Oral Oncol 44(6):538–544

    Article  PubMed  CAS  Google Scholar 

  3. Balas C, Papoutsoglou G, Potirakis A (2008) In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker. Ieee Journal of Selected Topics in Quantum Electronics 14(1):29–42

    Article  CAS  Google Scholar 

  4. Zagaynova EV, Streltsova OS, Gladkova ND, Snopova LB, Gelikonov GV, Feldchtein FI et al (2002) In vivo optical coherence tomography feasibility for bladder disease. J Urol 167(3):1492–1496

    Article  PubMed  Google Scholar 

  5. Gambichler T, Hyun J, Moussa G, Tomi NS, Boms S, Altmeyer P et al (2007) Optical coherence tomography of cutaneous lupus erythematosus correlates with histopathology. Lupus 16(1):35–38

    Article  PubMed  CAS  Google Scholar 

  6. Abbey LM, Kaugars GE, Gunsolley JC, Burns JC, Page DG, Svirsky JA et al (1995) Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 80(2):188–191

    Article  PubMed  CAS  Google Scholar 

  7. Fischer DJ, Epstein JB, Morton TH, Schwartz SM (2004) Interobserver reliability in the histopathologic diagnosis of oral pre-malignant and malignant lesions. J Oral Pathol Med 33(2):65–70

    Article  PubMed  Google Scholar 

  8. Keenan SJ, Diamond J, McCluggage WG, Bharucha H, Thompson D, Bartels PH et al (2000) An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J Pathol 192(3):351–362

    Article  PubMed  CAS  Google Scholar 

  9. Guillaud M, Cox D, Adler-Storthz K, Malpica A, Staerkel G, Matisic J et al (2004) Exploratory analysis of quantitative histopathology of cervical intraepithelial neoplasia: objectivity, reproducibility, malignancy-associated changes, and human papillomavirus. Cytometry A 60(1):81–89

    Article  PubMed  Google Scholar 

  10. Bouquot JE, Speight PM, Farthing PM. Epithelial dysplasia of the oral mucosa-diagnostic problems and prognostic features J Cdip. 2006: 11–21.

  11. Bohringer HJ, Boller D, Leppert J, Knopp U, Lankenau E, Reusche E et al (2006) Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers Surg Med 38(6):588–597

    Article  PubMed  CAS  Google Scholar 

  12. Schmitt JM (1999) Optical coherence tomography (OCT): a review. Ieee Journal of Selected Topics in Quantum Electronics 5(4):1205–1215

    Article  CAS  Google Scholar 

  13. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography - principles and applications. Rep Prog Phys 66(2):239–303

    Article  Google Scholar 

  14. Tomlins PH, Wang RK (2005) Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38(15):2519–2535

    Article  CAS  Google Scholar 

  15. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA (2007) Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 12(5):051403

    Article  PubMed  Google Scholar 

  16. Kramoreva LI, Rozhko YI (2010) Optical coherence tomography (Review). J Appl Spectrosc 77(4):449–467

    Article  CAS  Google Scholar 

  17. Hearnden V (2011) Developing tissue engineered models of oral mucosa and oral cancer to study novel therapeutic and diagnostic techniques. [Electronic thesis]. University of Sheffield, Sheffield

    Google Scholar 

  18. Wilder-Smith P, Hammer-Wilson MJ, Zhang J, Wang Q, Osann K, Chen Z et al (2007) In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography. Clin Cancer Res 13(8):2449–2454

    Article  PubMed  CAS  Google Scholar 

  19. Ozawa N, Sumi Y, Chong C, Kurabayashi T (2009) Evaluation of oral vascular anomalies using optical coherence tomography. Br J Oral Maxillofac Surg 47(8):622-626

    Google Scholar 

  20. Ozawa N, Sumi Y, Shimozato K, Chong C, Kurabayashi T (2009) In vivo imaging of human labial glands using advanced optical coherence tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(3):425–429

    Article  PubMed  Google Scholar 

  21. Ridgway JM, Armstrong WB, Guo S, Mahmood U, Su J, Jackson RP et al (2006) In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg 132(10):1074–1081

    Article  PubMed  Google Scholar 

  22. Pommerencke T, Steinberg T, Dickhaus H, Tomakidi P, Grabe N (2008) Nuclear staining and relative distance for quantifying epidermal differentiation in biomarker expression profiling. BMC Bioinformatics 9:473

    Article  PubMed  Google Scholar 

  23. Broekaert D, Van Oostveldt P, Coucke P, De Bersaques J, Gillis E, Reyniers P (1986) Nuclear differentiation and ultimate fate during epidermal keratinization. Two-wavelength and cytofluorometric DNA investigations completed by computerized scanning image analysis. Arch Dermatol Res 279(2):100–111

    Article  PubMed  CAS  Google Scholar 

  24. Drezek R, Guillaud M, Collier T, Boiko I, Malpica A, Macaulay C et al (2003) Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J Biomed Opt 8(1):7–16

    Article  PubMed  Google Scholar 

  25. Peter H. Tomlins, Robert A. Ferguson, Christian Hart and Peter Woolliams. Point-Spread Function Phantoms for Optical Coherence Tomography. NPL Reports National Physical Laboratory; August 2009. Report No.: 1754–2944.

  26. Levitz D, Thrane L, Frosz M, Andersen P, Andersen C, Andersson-Engels S et al (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Express 12(2):249–259

    Article  PubMed  Google Scholar 

  27. Bohringer HJ, Lankenau E, Stellmacher F, Reusche E, Huttmann G, Giese A (2009) Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir 151(5):507–517

    Article  CAS  Google Scholar 

  28. Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH (2004) Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol 150(2):220–225

    Article  PubMed  CAS  Google Scholar 

  29. van der Meer FJ, Faber DJ, Perree J, Pasterkamp G, Baraznji Sassoon D, van Leeuwen TG (2005) Quantitative optical coherence tomography of arterial wall components. Lasers Med Sci 20(1):45–51

    Article  PubMed  Google Scholar 

  30. Tsai MT, Lee HC, Lee CK, Yu CH, Chen HM, Chiang CP et al (2008) Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express 16(20):15847–15862

    Article  PubMed  Google Scholar 

  31. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM et al (2009) Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 14(4):044028

    Article  PubMed  Google Scholar 

  32. Woolliams PD, Tomlins PH (2011) The modulation transfer function of an optical coherence tomography imaging system in turbid media. Phys Med Biol 56(9):2855–2871

    Article  PubMed  CAS  Google Scholar 

  33. Tomlins PH, Adegun O, Hagi-Pavli E, Piper K, Bader D, Fortune F (2010) Scattering attenuation microscopy of oral epithelial dysplasia. J Biomed Opt 15(6):066003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Institute of Dentistry, Barts & the London, School of Medicine and Dentistry.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Fortune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegun, O.K., Tomlins, P.H., Hagi-Pavli, E. et al. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci 27, 795–804 (2012). https://doi.org/10.1007/s10103-011-0975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0975-1

Keywords

Navigation