Skip to main content
Log in

Development of a thulium (Tm:YAP) laser system for brain tissue ablation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In this study, a thulium (Tm:YAP) laser system was developed for brain surgery applications. As the Tm:YAP laser is a continuous-wave laser delivered via silica fibers, it would have great potential for stereotaxic neurosurgery with highest local absorption in the IR region. The laser system developed in this study allowed the user to set the power level, exposure time, and modulation parameters (pulse width and on-off cycles). The Tm:YAP laser beam (200–600 mW, 69–208 W/cm2) was delivered from a distance of 2 mm to cortical and subcortical regions of ex-vivo Wistar rat brain tissue samples via a 200-μm-core optical fiber. The system performance, dosimetry study, and ablation characteristics of the Tm:YAP laser were tested at different power levels by maximizing the therapeutic effects and minimizing unwanted thermal side-effects. The coagulation and ablation diameters were measured under microscope. The maximum ablation efficiency (100 × ablation diameter/coagulation diameter) was obtained when the Tm:YAP laser system was operated at 200 mW for 10 s. At this laser dose, the ablation efficiency was found to be 71.4% and 58.7% for cortical and subcortical regions, respectively. The fiber-coupled Tm:YAP laser system in hence proposed for the delivery of photothermal therapies in medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elder IF, Payne J (1997) Diode-pumped, room-temperature Tm:YAP laser. Appl Opt 36:8606–8610

    Article  PubMed  CAS  Google Scholar 

  2. Li Y, Yao B, Wang Y, Ju Y, Zhao G, Zong Y, Xu J (2007) High efficient diode-pumped Tm:YAP laser at room temperature. Chin Opt Lett 5:286–287

    CAS  Google Scholar 

  3. Ni H, Rand SC (1991) Avalanche upconversion in Tm:YALO3. Opt Lett 16:1424

    Article  PubMed  CAS  Google Scholar 

  4. Cornacchia F, Parisi D, Bernardini C, Toncelli A, Tonelli M (2004) Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser. Opt Express 12:1982–1989

    Article  PubMed  CAS  Google Scholar 

  5. Razdobreev I, Shestakov A (2006) Self-pulsing of a monolithic Tm-doped YAlO3 microlaser. Phys Rev A 73:053815

    Article  Google Scholar 

  6. Elder IF, Payne MJP (1998) Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm. Ho:YLF Opt Commun 145:329–339

    Article  CAS  Google Scholar 

  7. Stoneman RC, Esterowitz L (1995) Efficient 1.94-pm Tm:YALO laser. IEEE J Sel Top Quantum Electron 1:78–82

    Article  CAS  Google Scholar 

  8. Elder IF, Payne J (1998) Diode-pumped, room-temperature Tm:YAP laser. Appl Opt 36:8606–8610

    Article  Google Scholar 

  9. Kalaycioglu H, Sennaroglu A (2008) Low-threshold continuous-wave Tm3+:YAlO3 laser, Opt Commun 281:4071–4074

    Article  CAS  Google Scholar 

  10. Nishioka NS, Domankevitz Y (1990) Comparison of tissue ablation with pulsed holmium and thulium lasers. IEEE J Quantum Electron 26:2271–2275

    Article  CAS  Google Scholar 

  11. Gordon S, Watson G (2006) Thulium laser enucleation of the prostate. Eur Urol Suppl 5:310

    Article  Google Scholar 

  12. Ludwig HC, Kruschat T, Knobloch T, Teichmann HO, Rostasy K, Rohde V (2007) First experiences with a 2.0-μm near infrared laser system for neuroendoscopy. Neurosurg Rev 30:195–201

    Article  PubMed  CAS  Google Scholar 

  13. Bozkulak O, Tabakoglu HO, Aksoy A, Kurtkaya O, Sav A, Canbeyli R, Gulsoy M (2004) 980-nm diode laser for brain surgery: histopathology and recovery period. Lasers Med Sci 19:41–47

    Article  PubMed  Google Scholar 

  14. Gulsoy M, Celikel TA, Kurt A, Canbeyli R, Çilesiz I (2001) Er:YAG Laser ablation on cerebellar and cerebral tissue. Lasers Med Sci 16:40–43

    Article  PubMed  CAS  Google Scholar 

  15. Wieliczka DM, Weng S, Querry MR (1989) Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. Appl Opt 28:1714–1719

    Article  PubMed  CAS  Google Scholar 

  16. El-Sherif AF, King TA (2003) Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers. Lasers Med Sci 18:139–147

    Article  PubMed  CAS  Google Scholar 

  17. Kalaycioglu H, Sennaroglu A, Kurt A (2005) Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers. IEEE J Sel Top Quan Electron 11:667–673

    Article  CAS  Google Scholar 

  18. Geldi C, Bozkulak O, Tabakoglu HO, Isci S, Kurt A, Gulsoy M (2006) Development of a surgical diode-lasers: controlling the mode of operation. Photomed Laser Surg 24:723–729

    Article  PubMed  Google Scholar 

  19. Ding Y, Ying H, Shao S (2000) A time-varying fuzzy on-off control system with application to the control of tissue temperature during laser heating. IEEE Fuzzy Syst 1:528–533

    Google Scholar 

  20. Birch JF, Mandley DJ, Williams SL, Worrall DR, Trotter PJ, Wilkinson F, Bell PR (2000) Methylene blue-based protein solder for vascular anastomoses: an in vitro burst pressure study. Lasers Surg Med 26:323–329

    Article  PubMed  CAS  Google Scholar 

  21. Pierce MC, Jackson SD, Dickinson MR, King TA (1999) Laser–tissue interaction with a high-power 2-μm fiber laser: Preliminary studies with soft tissue. Lasers Surg Med 25:407–413

    Article  PubMed  CAS  Google Scholar 

  22. Lange BI, Brendel T, Hüttmann G (2002) Temperature dependence of light absorption in water at holium and thulium laser wavelengths. Appl Opt 41:5797–5803

    Article  PubMed  CAS  Google Scholar 

  23. Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ (2005) Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg Med 14:258–268

    Article  Google Scholar 

  24. McDonald AV, Claffey NM, Pearson GJ, Blau W, Setchell DJ (2000) Effect of Nd:YAG radiation at millisecond pulse duration on dentine crater depth. Lasers Surg Med 27:213–223

    Article  PubMed  CAS  Google Scholar 

  25. Karamzadeh AM, Wong BJF, Crumley RL, Ahuja G (2004) Lasers in pediatric airway surgery: current and future clinical applications. Lasers Surg Med 35:128–134

    Article  PubMed  Google Scholar 

  26. Bilici T, Topaloglu N, Tabakoglu O, Kalaycıoglu H, Kurt A, Sennaroglu A, Gulsoy M (2010) Modulated and continuous-wave operations of thulium (Tm:YAP) laser in tissue welding. J Biomed Opt 13:038001

    Article  Google Scholar 

  27. Forss N, Raij TT, Sepp M, Hari R (2005) Common cortical network for first and second pain. Neuroimage 24:132–142

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey under TUBITAK-107E119 grant to Murat Gulsoy, Ph.D and under Bogazici University Scientific Research Fund BAP1952. The authors thank Resit Canbeyli, Ph. D., for providing the environment to perform in vivo experiments in the Psychobiology Laboratory, Bogazici University. A. Sennaroglu further acknowledges the research support provided by the Turkish Academy of Sciences. T. Bilici would like to thank Ozgur Tabakoglu, Nermin Topaloglu, Ayse Sena Sarp, and Eray Sevingil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Gulsoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilici, T., Mutlu, S., Kalaycioglu, H. et al. Development of a thulium (Tm:YAP) laser system for brain tissue ablation. Lasers Med Sci 26, 699–706 (2011). https://doi.org/10.1007/s10103-011-0915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0915-0

Keywords

Navigation