Skip to main content

Advertisement

Log in

Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This prospective clinical study evaluated the survival rate and the implant-crown success of 201 direct laser metal forming (DLMF) implants in different clinical applications, after short-term follow-up of functional loading. At the 1-year scheduled follow-up examination, several clinical, radiographic, and prosthetic parameters were assessed. Success criteria included absence of pain, sensitivity, suppuration, exudation; absence of implant mobility; absence of continuous peri-implant radiolucency, DIB <1.5 mm; absence of prosthetic complications at the implant-abutment interface. A total of 201 implants (106 maxilla, 95 mandible) were inserted in 62 patients (39 males, 23 females; aged between 26 and 65 years) in eight different clinical centers. The sites included anterior (n = 79) and posterior (n = 122) implants. The overall implant survival rate was 99.5%, with one implant loss (maxilla: 99.0%, 1 implant failure; mandible: 100.0%, no implant failures). The mean DIB was 0.4 ± 0.2 mm. Among the survived implants (200), five did not fulfill the success criteria, giving an implant-crown success of 97.5%. This 1-year follow-up prospective clinical study gives evidence of very high survival (99.5%) and success (97.5%) rates using DLMF implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500

    Article  PubMed  CAS  Google Scholar 

  2. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 4(20 Suppl):172–184

    Article  Google Scholar 

  3. Buser D (2001) Titanium for dental applications (II): implants with roughened surfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 875–888

    Google Scholar 

  4. Shibli JA, Grassi S, Piattelli A, Pecora GE, Ferrari DS, Onuma T, d'Avila S, Coelho PG, Barros R, Iezzi G (2010) Histomorphometric evaluation of bioceramic molecular impregnated and dual acid-etched implant surfaces in the human posterior maxilla. Clin Implant Dent Relat Res 12:281–288

    Article  PubMed  Google Scholar 

  5. Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E Jr, Iezzi G, Piattelli A (2007) Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater 80:377–385

    PubMed  Google Scholar 

  6. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19:247–259

    PubMed  Google Scholar 

  7. Khayat PG, Milliez SN (2007) Prospective clinical evaluation of 835 multithreaded tapered screw vent implants: results after two years of functional loading. J Oral Implantol 33:225–231

    Article  PubMed  Google Scholar 

  8. Astrand P, Engquist B, Dahlgren S, Grondhal K, Engquist E, Feldmann H (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bone reactions. Clin Oral Implants Res 15:413–420

    Article  PubMed  Google Scholar 

  9. Lueck RA, Galante JO, Rostoker W, Ray R (1969) Development of an open pore metallic implant to permit attachment to bone. Surg Forum 20:456–457

    PubMed  CAS  Google Scholar 

  10. Welsh RP, Pilliar RM, Macnab I (1971) Surgical implants. The role of surface porosity in fixation to bone and acrylic. J Bone Joint Surg Am 53:963–977

    PubMed  CAS  Google Scholar 

  11. Kroger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74

    PubMed  Google Scholar 

  12. Traini T, Mangano C, Sammons RL et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24:1525–1533

    Article  PubMed  CAS  Google Scholar 

  13. Mangano C, Shibli JA, Mangano F, Sammons R, Macchi A (2009) Dental implants from the laser fusion of titanium microparticles: from research to clinical applications. J Osseoint 1:9–22

    Google Scholar 

  14. Larsson C, Esposito M, Liao H, Thomsen P (2001) The titanium-bone interface in vivo. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 587–648

    Google Scholar 

  15. Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635

    Article  PubMed  CAS  Google Scholar 

  16. Gruner H (2001) Thermal spray coatings on titanium. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Material science, surface science, engineering, biological responses and medical applications. Springer, Berlin Heidelberg New York, pp 375–416

    Google Scholar 

  17. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450

    Article  PubMed  CAS  Google Scholar 

  18. Galante J, Rostoker W, Lueck R (1971) Sintered fibre metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53A:101–114

    Google Scholar 

  19. Li JP, de Wijn JR, van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235

    Article  PubMed  CAS  Google Scholar 

  20. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670

    Article  PubMed  CAS  Google Scholar 

  21. Lopez-Heredia M, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as scaffold for bone tissue engineering. Biomaterials 29:2608–2615

    Article  PubMed  CAS  Google Scholar 

  22. Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V implants produced by direct laser forming. Biomaterials 27:955–963

    Article  PubMed  CAS  Google Scholar 

  23. Mangano C, Raspanti M, Traini T, Sammons R, Piattelli A (2008) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res (part A) 88:823–831

    Google Scholar 

  24. Mangano C, De Rosa A, Desiderio V et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31:3543–3551

    Article  PubMed  CAS  Google Scholar 

  25. Shibli JA, Mangano C, d’Avila S et al (2010) Influence of direct laser fabrication implant topography on type IV bone: a histomorphometric study in humans. J Biomed Mater Res (part A) 93:607–614

    Google Scholar 

  26. Mangano C, Piattelli A, d’Avila S et al (2010) Early human bone response to laser metal sintering surface topography. A histologic report. J Oral Implantol 36:91–96

    Article  PubMed  Google Scholar 

  27. Mombelli A, Lang NP (1994) Clinical parameters for the evaluation of dental implants. Periodontol 2000 4:81–86

    Article  PubMed  CAS  Google Scholar 

  28. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  PubMed  CAS  Google Scholar 

  29. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194

    Article  PubMed  CAS  Google Scholar 

  30. Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83:105–115

    Google Scholar 

  31. Sachlos E, Czernuska JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39

    PubMed  CAS  Google Scholar 

  32. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  PubMed  CAS  Google Scholar 

  33. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146

    Article  PubMed  CAS  Google Scholar 

  34. Yoshikawa T, Ohgushi H, Tamai S (1996) Intermediate bone forming capability of prefabricated osteogenic hydroxyapatite. J Biomed Mater Res 32:481–492

    Article  PubMed  CAS  Google Scholar 

  35. Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed prous titanium. Acta Biomater 3:1007–1018

    Article  PubMed  CAS  Google Scholar 

  36. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401

    PubMed  CAS  Google Scholar 

  37. Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A (2005) Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res (part B) 74:636–642

    Article  Google Scholar 

  38. Ingber D (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57

    Article  Google Scholar 

  39. Ripamonti U (2004) Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J Cell Mol Med 8:169–180

    Article  PubMed  CAS  Google Scholar 

  40. Cretel E, Pierres A, Benoliel AM, Bongrand P (2008) How cells feel their environment: a focus on early dynamic events. Cell Mol Bioeng 1:5–14

    Article  PubMed  Google Scholar 

Download references

Disclaimers

The authors declare that they have no financial relationship with any commercial firm that may pose a conflict of interest for this study. No grants, equipment, or other sources of support were provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mangano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangano, C., Mangano, F., Shibli, J.A. et al. Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study. Lasers Med Sci 27, 181–189 (2012). https://doi.org/10.1007/s10103-011-0904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0904-3

Keywords

Navigation