Skip to main content

Advertisement

Log in

Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO2 and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO2 laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO2 laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO2 laser at 1 W, but greater pulp safety was provided by CO2 laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO2 laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO2 (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO2 and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully controlled in order to limit increases in pulpal temperature and alterations to the enamel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ten Cate JM (2004) Fluorides in caries prevention and control: empiricism or science. Caries Res 38:254–257

    Article  PubMed  Google Scholar 

  2. Klein ALL, Rodrigues LKA, Eduardo CP, Dos Santos MN, Cury JA (2005) Caries inhibition around composite restorations by pulsed carbon dioxide laser application. Eur J Oral Sci 113(3):239–244

    Article  PubMed  Google Scholar 

  3. Castellan CS, Luiz AC, Bezinelli LM, Lopes RMG, Mendes FM, Eduardo CDP, De Freitas PM (2007) In vitro evaluation of enamel demineralization after Er:YAG and Nd:YAG laser irradiation on primary teeth. Photomed Laser Surg 25(2):85–90

    PubMed  CAS  Google Scholar 

  4. Apel C, Meister J, Schmitt N, Gräber HG, Gutknecht N (2002) Calcium solubility of dental enamel following sub-ablative Er:YAG and Er:YSGG laser irradiation in vitro. Lasers Surg Med 30(5):337–341

    Article  PubMed  CAS  Google Scholar 

  5. Hossain MM, Hossain M, Kimura Y, Kinoshita J, Yamada Y, Matsumoto K (2002) Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg 20:77–82

    Article  PubMed  Google Scholar 

  6. Westerman GH, Hicks MJ, Flaitz CM, Ellis RW, Powell GL (2004) Argon laser irradiation and fluoride treatment effects on caries-like enamel lesion formation in primary teeth: an in vitro study. Am J Dent 17(4):241–244

    PubMed  Google Scholar 

  7. Chen CC, Huang ST (2009) The effects of lasers and fluoride on the acid resistance of decalcified human enamel. Photomed Laser Surg 27(3):447–452

    Article  PubMed  Google Scholar 

  8. Kuroda S, Fowler BO (1984) Compositional, structural and phase changes in vitro laser-irradiated human tooth enamel. Calcif Tissue Int 36(4):361–369

    Article  PubMed  CAS  Google Scholar 

  9. Steiner-Oliveira C, Rodrigues LKA, Soares LES, Martin AA, Zezell DM, Nobre-Dos-Santos M (2006) Chemical, morphological and thermal effects of 10.6-μm CO2 laser on the inhibition of enamel demineralization. Dent Mater J 25(3):455–462

    Article  PubMed  CAS  Google Scholar 

  10. Hsu CYS, Jordan TH, Dederich DN, Wefel JS (2000) Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralisation. J Dent Res 79:1725–1730

    Article  PubMed  CAS  Google Scholar 

  11. Schmidlin PR, Dörig I, Lussi A, Roos M, Imfeld T (2007) CO2 laser-irradiation through topically applied fluoride increases acid resistance of demineralised human enamel in vitro. Oral Health Prev Dent 5(3):201–208

    PubMed  Google Scholar 

  12. Tepper SA, Zehnder M, Pajarola GF, Schmidlin PR (2004) Increase fluoride uptake and acid resistance by CO2 laser-irradiation trough topically applied fluoride on human enamel in vitro. J Dent 32:635–641

    Article  PubMed  CAS  Google Scholar 

  13. McCormack SM, Fried D, Featherstone JD, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74(10):1702–1708

    Article  PubMed  CAS  Google Scholar 

  14. Malmstrom HS, McCormack SM, Fried D, Featherstone JDB (2001) Effects of CO2 laser on pulpal temperature and surface morphology: an in vitro study. J Dent 29:521–529

    Article  PubMed  CAS  Google Scholar 

  15. Klim JD, Fox DB, Coluzzi DJ, Neckel CP, Swick MD (2000) The diode laser in dentistry. Wavelengths 8(4):13–16

    Google Scholar 

  16. Sato K (1983) Relation between acid dissolution and histological alteration of heated tooth enamel. Caries Res 17:490–495

    Article  PubMed  CAS  Google Scholar 

  17. Fowler BO, Kuroda S (1986) Changes in heat and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208

    Article  PubMed  CAS  Google Scholar 

  18. Hirota F, Furumoto K (2003) A hypothesis for acquired acid resistance afforded by the laser irradiation. Int Congr Ser 1248:307–311

    Article  CAS  Google Scholar 

  19. Villalba-Moreno J, González-Rodríguez A, López-González JD, Bolaños-Carmona MV, Pedraza-Muriel V (2007) Increased fluoride uptake in human dental specimens treated with diode laser. Lasers Med Sci 22:137–142

    Article  PubMed  Google Scholar 

  20. Yu DG, Kimura Y, Fujita A, Hossain M, Kinoshita JI, Suzuki N, Matsumoto K (2001) Study on acid resistance of human dental enamel and dentin irradiated by semiconductor laser with Ag(NH3)2F solution. J Clin Laser Med Surg 19(3):141–146

    Article  PubMed  CAS  Google Scholar 

  21. Santaella MR, Braun A, Matson E, Frentzen M (2004) Effect of diode laser and fluoride varnish on initial surface demineralization of primary dentition enamel: an in vitro study. Int J Paediatr Dent 14(3):199–203

    Article  PubMed  CAS  Google Scholar 

  22. Strawn SE, White JM, Marshall GW, Gee L, Goodis HE, Marshall SJ (1996) Spectroscopic changes in human dentine exposed to various storage solutions. J Dent 24:375–377

    Article  Google Scholar 

  23. Kissa E (1983) Determination of fluoride at low concentrations with the ion-selective electrode. Anal Chem 55:1448–1451

    Article  Google Scholar 

  24. Rodrigues LK, Nobre dos Santos M, Pereira D, Assaf AV, Pardi V (2004) Carbon dioxide laser in dental caries prevention. J Dent 32(7):531–540

    Article  PubMed  Google Scholar 

  25. Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS (2004) Effects of CO2 laser on fluoride uptake in enamel. J Dent 32(2):161–167

    Article  PubMed  CAS  Google Scholar 

  26. Klocke A, Mihailova B, Zhang S, Gasharova B, Stosch R, Güttler B, Kahl-Nieke B, Henriot P, Ritschel B, Bismayer U (2007) CO2 laser-induced zonation in dental enamel: a Raman and IR microspectroscopic study. J Biomed Mater Res B Appl Biomater 81(2):499–507

    PubMed  Google Scholar 

  27. Weintraub JA (2003) Fluoride varnish for caries prevention: comparisons with other preventive agents and recommendations for a community-based protocol. Spec Care Dentist 23(5):180–186

    Article  PubMed  Google Scholar 

  28. ten Cate JM, Buijs MJ, Miller CC, Exterkate RA (2008) Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res 87(10):943–947

    Article  PubMed  Google Scholar 

  29. Kato IT, Kohara EK, Sarkis JE, Wetter NU (2006) Effects of 960-nm diode laser irradiation on calcium solubility of dental enamel: an in vitro study. Photomed Laser Surg 24(6):689–693

    Article  PubMed  CAS  Google Scholar 

  30. Fried D, Zuerlein M, Featherstone JDB, Seka W (1998) IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci 128:852–856

    Article  Google Scholar 

  31. Nelson DG, Wefel JS, Jongebloed WL, Featherstone JD (1987) Morphology, histology and crystallography of human dental enamel treated with pulsed low-energy infrared laser radiation. Caries Res 21(5):411–426

    Article  PubMed  CAS  Google Scholar 

  32. Esteves-Oliveira M, Apel C, Gutknecht N, Velloso WF, Cotrim MEB, Eduardo CP, Zezell DM (2008) Low-fluence CO2 laser irradiation decreases enamel solubility. Laser Phys 18(4):478–485

    Article  CAS  Google Scholar 

  33. Apel C, Schäfer C, Gutknecht N (2003) Demineralization of Er:YAG and Er, Cr:YSGG laser-prepared enamel cavities in vitro. Caries Res 37(1):34–37

    Article  PubMed  CAS  Google Scholar 

  34. Leamy P, Brown PW, TenHuisen K, Randall C (1998) Fluoride uptake by hydroxyapatite formed by the hydrolysis of alpha-tricalcium phosphate. J Biomed Mater Res 42(3):458–464

    Article  PubMed  CAS  Google Scholar 

  35. Yesinowski JP, Mobley MJ (1983) Fluorine-19 MAS-NMR of fluoridated hydroxyapatite surfaces. J Am Chem Soc 105(19):6191–6193

    Article  CAS  Google Scholar 

  36. Attin T, Hartmann O, Hilgers RD, Hellwig E (1995) Fluoride retention of incipient enamel lesions after treatment with a calcium fluoride varnish in vivo. Arch Oral Biol 40(3):169–174

    Article  PubMed  CAS  Google Scholar 

  37. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Andalusian Environment Centre for the use of microscope and technical assistance, the University of Granada for providing the study materials, Richard Davies for assistance with the English version of this manuscript, and Jose M Rodriguez Toledo for help with the figure depiction of the experimental designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto González-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Rodríguez, A., de Dios López-González, J., del Castillo, J.L. et al. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci 26, 317–324 (2011). https://doi.org/10.1007/s10103-010-0784-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0784-y

Keywords

Navigation