Skip to main content

Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy

Abstract

We performed laser-induced breakdown spectroscopy (LIBS) for the in situ quantitative estimation of elemental constituents distributed in different parts of kidney stones obtained directly from patients by surgery. We did this by focusing the laser light directly on the center, shell, and surface of the stones to find the spatial distribution of the elements inside the stone. The elements detected in the stones were calcium, magnesium, manganese, copper, iron, zinc, strontium, sodium, potassium, carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur, and chlorine (Cl), etc. We optimized the LIBS signals by varying the laser energy from 10 mJ to 40 mJ to obtain the best signal-to-background and signal-to-noise ratios. We estimated the quantities of different elements in the stones by drawing calibration curves, plotting graphs of the analyte signal versus the absolute concentration of the elements in standard samples. The detection limits of the calibration curves were discussed. The concentrations of the different elements were found to be widely different in different stones found in different age groups of patients. It was observed that stones containing higher amounts of copper also possessed higher amounts of zinc. In general, the concentrations of trace elements present in the kidney stones decreased as we moved from center to shell and surface. Our results also revealed that the concentrations of elements present in the stones increased with the age of the patients. The results obtained from the calibration curves were compared with results from inductively coupled plasma mass spectrometry (ICP-MS). We also used the intensity ratios of different elemental lines to find the spatial distribution of different elements inside the kidney stones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Gurol A, Ergen E, Karabulut A, Polat R, Altinkaynak K, Budak G (2004) Determination of P, S, Cl, K, and Ca in human urinary stones by EDXRF. Instrum Sci Technol 32:69–76. doi:10.1081/CI-120027348

    Article  Google Scholar 

  2. Al-Kofahi MM, Hallak AB (1996) Analysis of kidney stones by PIXE and RBS techniques. XRay Spectrom 25:225–228. doi:10.1002/(SICI)1097-4539(199609)25:5<225::AID-XRS168>3.0.CO;2-P

    Article  CAS  Google Scholar 

  3. Pougnet MAB, Peisach M, Rodges AL (1988) The application of a combined PIXE and XRD approach to the analysis of human stones. Nucl Instrum Methods B 35:472–477. doi:10.1016/0168-583X(88)90314-X

    Article  Google Scholar 

  4. No authors listed (1988) Consensus conference. Prevention and treatment of kidney stones. JAMA 260:977–981. doi:10.1001/jama.260.7.977

  5. Macfarlane MT (1995) Metabolic disorders, urology, 2nd edn.; House Officer Series. Lippincott Williams & Wilkins, Waverly, Mass

    Google Scholar 

  6. Kodati VR, Tu AT, Turumin JL (1990) Raman spectroscopic identification of uric-acid-type kidney stone. Appl Spectrosc 44:1134–1136. doi:10.1366/0003702904086470

    Article  CAS  Google Scholar 

  7. Hodgkinson A (1971) A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi. J Clin Pathol 24:147–151. doi:10.1136/jcp.24.2.147

    PubMed  Article  CAS  Google Scholar 

  8. Westbury EJ, Omenogor PO (1970) A quantitative approach to the analysis of renal calculi. J Med Lab Technol 27:462–474

    PubMed  CAS  Google Scholar 

  9. Takasaki E (1971) An observation on the analysis of urinary calculi by infrared spectroscopy. Calcif Tissue Res 7:232–240. doi:10.1007/BF02062610

    PubMed  Article  CAS  Google Scholar 

  10. Gibson RI (1974) Descriptive human pathological mineralogy. Am Miner 59:1177–1182

    CAS  Google Scholar 

  11. Lonsdale K, Sutor DJ, Wooley S (1968) Composition of urinary calculi by x-ray diffraction. Collected data from various localities. I. Norwich (England) and district, 1773–1961. Br J Urol 40:33–36

    PubMed  Article  CAS  Google Scholar 

  12. Abugassa I, Sarmani SB, Samat SB (1999) Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method. Appl Radiat Isot 50:989–994. doi:10.1016/S0969-8043(98)00174-2

    PubMed  Article  CAS  Google Scholar 

  13. Höbarth K, Koeberl C, Hofbauer J (1993) Rare-earch elements in urinary calculi. Urol Res 21:261–264. doi:10.1007/BF00307707

    PubMed  Article  Google Scholar 

  14. Hofbauer J, Steffan I, Höbarth K, Vujicic G, Schwetz H, Reich G, Zechner O (1991) Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J Urol 145:93–96

    PubMed  CAS  Google Scholar 

  15. Sarmani S, Kuan LL, Baker MA (1990) Instrumental neutron activation analysis of kidney stones. Biol Trace Elem Res 26–27:497–502

    PubMed  Article  Google Scholar 

  16. Joost J, Tessadri R (1987) Trace element investigations in kidney stone patients. Eur Urol 13:264–270

    PubMed  CAS  Google Scholar 

  17. Levinson AA, Nosal M, Davidman M, Prien EL Sr, Prien EL Jr, Stevenson RG (1978) Trace elements in kidney stones from three areas in the United States. Invest Urol 15:270–274

    PubMed  CAS  Google Scholar 

  18. Chaudhri MA, Watling J, Khan FA (2007) Spatial distribution of major and trace elements in bladder and kidney stones. J Radioanal Nucl Chem 271:713–720. doi:10.1007/s10967-007-0331-x

    Article  CAS  Google Scholar 

  19. Singh JP, Thakur SN (2007) Laser induced breakdown spectroscopy. Elsevier Science, Amsterdam

    Google Scholar 

  20. Miziolek AW, Palleschi V, Schechter I (2006) Laser induced breakdown spectroscopy: fundamentals and applications. Cambridge University Press, New York

    Google Scholar 

  21. Fang X, Ahmad SR, Mayo M, Iqbal S (2005) Elemental analysis of urinary calculi by laser induced plasma spectroscopy. Lasers Med Sci 20:132–137. doi:10.1007/s10103-005-0356-8

    PubMed  Article  Google Scholar 

  22. Singh VK, Rai V, Rai AK Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy. Lasers Med Sci.. doi:10.1007/s10103-007-0516-0

  23. Singh VK, Singh V, Rai AK, Thakur SN, Rai PK, Singh JP (2008) Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Appl Opt 47:G38–G47. doi:10.1364/AO.47.000G38

    PubMed  Article  Google Scholar 

  24. Pandhija S, Rai AK (2009) Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS. Environ Monit Assess 148:437–447. doi:10.1007/s10661-008-0173-1

    PubMed  Article  Google Scholar 

  25. Pandhija S, Rai AK (2008) Laser induced breakdown spectroscopy: a versatile tool for monitoring traces in materials. Pramana J Phys 70:553–563

    Article  CAS  Google Scholar 

  26. Rai NK, Rai AK (2008) LIBS—an efficient approach for the determination of Cr in industrial wastewater. J Hazard Mater 150:835–838. doi:10.1016/j.jhazmat.2007.10.044

    PubMed  Article  CAS  Google Scholar 

  27. Rai PK, Rai NK, Rai AK, Watal G (2007) Role of LIBS in elemental analysis of Psidium guajava responsible for glycemic potential. Instrum Sci Technol 35:507–522. doi:10.1080/10739140701540230

    Article  CAS  Google Scholar 

  28. Rai S, Rai AK, Thakur SN (2008) Identification of nitro-compounds with LIBS. Appl Phys B 91:645–650. doi:10.1007/s00340-008-3040-4

    Article  CAS  Google Scholar 

  29. NIST. National Institute of Standards and Technology USA, electronic database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  30. Wu D, Singh JP, Yueh FY, Monts DL (1996) 2, 4, 6-Trinitrotoluene detection by laser photofragmentation-laser induced fluorescence. Appl Opt 35:3998–4003

    Article  CAS  Google Scholar 

  31. Durak I, Kilic Z, Sahin A, Akpoyraz M (1992) Analysis of calcium, iron, copper, and zinc contents of nucleus and crust parts of urinary calculi. Urol Res 20:23–26. doi:10.1007/BF00294330

    PubMed  Article  CAS  Google Scholar 

  32. Turgut M, Unal I, Berber A, Demir TA, Mutlu F, Aydar Y (2008) The concentration of Zn, Mg and Mn in calcium oxalate monohydrate stones appears to interfere with their fragility in ESWL therapy. Urol Res 36:31–38. doi:10.1007/s00240-007-0133-1

    PubMed  Article  CAS  Google Scholar 

  33. Johansson G, Backman U, Danielson BG, Fellstrom B, Ljunghall S, Wikstrom B (1980) Biochemical and clinical effects of the prophylactic treatment of renal calcium stones with magnesium hydroxide. J Urol 124:770–774

    PubMed  CAS  Google Scholar 

  34. Lindberg J, Harvey J, Pak CY (1990) Effect of magnesium citrate and magnesium oxide on the crystallization of calcium salts in urine: changes produced by food–magnesium interaction. J Urol 143:248–251

    PubMed  CAS  Google Scholar 

  35. Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106:549–561. doi:10.1042/CS20040048

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. A.K. Chawdhary, of the Indian Institute of Technology Roorkee (IIT-Roorkee) for providing the facility of ICP-MS analysis of the kidney stone samples. Financial assistance from the Defence Research & Development Organization (DRDO) project (no. ERIP/ER/04303481/M/01/787) is duly acknowledged. V.K. Singh thanks Allahabad University, Allahabad, India, for financial support in the form of a D. Phil. Scholarship under the University Grants Commission (UGC) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, V.K., Rai, A.K., Rai, P.K. et al. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers Med Sci 24, 749–759 (2009). https://doi.org/10.1007/s10103-008-0635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0635-2

Keywords

  • Laser-induced breakdown spectroscopy (LIBS)
  • Kidney stones
  • Calibration curve
  • Trace elements