Skip to main content
Log in

Effect of laser therapy (660 nm) on recovery of the sciatic nerve in rats after injury through neurotmesis followed by epineural anastomosis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript


The aim of this study was to analyze the influence of aluminum gallium arsenide (AlGaAs) laser (660 nm) on the myelin sheath and functional recovery of the sciatic nerve in rats. The sciatic nerves of 12 Wistar rats were subjected to injury through neurotmesis and epineural anastomosis, and the animals were divided into two groups: group 1 was the control and group 2, underwent low-level laser therapy (LLLT). After the injury, AlGaAs laser at 660 nm, 4 J/cm2, 26.3 mW and beam area of 0.63 cm2 was administered to three equidistant points on the injury for 20 consecutive days. In the control group the mean area of the myelin impairment was 0.51 (± 0.11) on day 21 after the operation, whereas this value was 1.31 (± 0.22) in the LLLT group. Student’s t-test revealed a P value = 0.0229 for the mean area values of the myelin sheath between the LLLT and control groups. Comparison of the sciatic functional index (SFI) showed that there was no significant difference between the pre-lesion value in the laser therapy group and the control group. The use of AlGaAs laser (660 nm) provided significant changes to the morphometrically assessed area of the myelin sheath, but it did not culminate in positive results for functional recovery in the sciatic nerve of the rats after injury through neurotmesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Rodríguez FJ, Valero-Cabré A, Navarro X (2004) Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Models 1:177–185. doi:10.1016/j.ddmod.2004.09.008

    Article  Google Scholar 

  2. Rochkind S, Quaknine GE (1992) New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 14:2–11

    PubMed  CAS  Google Scholar 

  3. Noble J, Munro CA, Prasad VSSV (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45:116–122. doi:10.1097/00005373-199807000-00025

    Article  PubMed  CAS  Google Scholar 

  4. Varejão AS, Meek MF, Ferreira AJA, Patrício JAB, Cabrita AMS (2001) Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108:1–9. doi:10.1016/S0165-0270(01)00378-8

    Article  PubMed  Google Scholar 

  5. De Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional conduction of the rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634–643. doi:10.1016/0014-4886(82)90234-5

    Article  PubMed  Google Scholar 

  6. Mendonça AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129:183–190. doi:10.1016/S0165-0270(03)00207-3

    Article  PubMed  Google Scholar 

  7. Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694–701. doi:10.1002/mus.20305

    Article  PubMed  Google Scholar 

  8. Raso VVM, Barbieri CH, Mazzer N, Fasan VS (2005) Can therapeutic ultrasound influence the regeneration of the peripheral nerves. J Neurosci Methods 142:185–192. doi:10.1016/j.jneumeth.2004.08.016

    Article  PubMed  Google Scholar 

  9. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342. doi:10.1002/lsm.1900160404

    Article  PubMed  CAS  Google Scholar 

  10. Bagis S, Comelekoglu U, Sahin G, Buyukakilli B, Erdogan C, Kanik A (2002) Acute electrophysiologic effect of pulsed gallium-arsenide low energy laser irradiation on configuration of compound nerve action potential and nerve excitability. Lasers Surg Med 30:376–380. doi:10.1002/lsm.10057

    Article  PubMed  Google Scholar 

  11. Rochkind S, Nissan M, Alon M, Shamir M, Salame K (2001) Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Med Sci 28:216–219. doi:10.1002/lsm.1041

    Article  CAS  Google Scholar 

  12. Campolat L, Kükner A, Campolat I, Ozan E (1999) Ultrastructural and morphometric analysis of peripheral nerve regeneration within silicone tubes. Turk J Med Sci 29:203–209

    Google Scholar 

  13. Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D (2002) Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol 176:221–228. doi:10.1006/exnr.2002.7922

    Article  PubMed  CAS  Google Scholar 

  14. De Sá JMR, Mazzer N, Barbieri CH, Barreira AA (2004) The end-to-side peripheral nerve repair functional and morphometric study using the peroneal nerve of rats. J Neurosci Methods 136:45–53. doi:10.1016/j.jneumeth.2003.12.018

    Article  PubMed  Google Scholar 

  15. Dijkstra JR, Meek MF, Robinson PH, Gramsbergen A (2000) Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. J Neurosci Methods 96:89–96. doi:10.1016/S0165-0270(99)00174-0

    Article  PubMed  CAS  Google Scholar 

  16. Endo C (2002) Estudo dos efeitos do tratamento com laser num modelo experimental de lesão nervosa por esmagamento do nervo ciático em ratos [Dissertação – Mestrado] Universidade de São Paulo

  17. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 99:1–15

    Google Scholar 

  18. Temple CLF, Ross DC, Dunning CE, Johnson JA (2004) Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstr Microsurg 20:645–650. doi:10.1055/s-2004-861525

    Article  PubMed  CAS  Google Scholar 

  19. Snyder SK, Byrnes KR, Borke RC, Sanches A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser. Lasers Surg Med 31:216–222. doi:10.1002/lsm.10098

    Article  PubMed  Google Scholar 

  20. Chelyshev IA, Kubitskii AA, Plakseichuk A (1996) Regeneratsiia nervnykh volokon pri obluchenii nizkointensivnymi lazerami. Morfologiia 110:47–50

    PubMed  Google Scholar 

  21. Karu TI (1988) Molecular mechanisms of the therapeutic effect of low-intensity laser irradiation. Lasers Life Sci 2:53–74

    Google Scholar 

  22. Manteifel VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in successive generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 32:556–566

    CAS  Google Scholar 

  23. Koka R, Hadlock TA (2001) Quantification of functional recovery following rat sciatic nerve transaction. Exp Neurol 168:192–195. doi:10.1006/exnr.2000.7600

    Article  PubMed  CAS  Google Scholar 

  24. Dahlin LB (2004) The biology of nerve injury and repair. J Am Soc Surg Hand 4:143–155. doi:10.1016/j.jassh.2004.06.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Filipe Abdalla dos Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Reis, F.A., Belchior, A.C.G., de Carvalho, P.d.T.C. et al. Effect of laser therapy (660 nm) on recovery of the sciatic nerve in rats after injury through neurotmesis followed by epineural anastomosis. Lasers Med Sci 24, 741–747 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: