Skip to main content

Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes

Abstract

Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm2, 3–4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l−1 ± 7.04 U l−1) than for those given placebo LLLT (28.49 U l−1 ± 22.62 U l−1). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l−1 ± 2.14 mmol l−1) than in the group subjected to placebo LLLT (10.52 mmol l−1 ± 1.82 mmol l−1). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796. doi:10.2165/00007256–200636090–00005

    Article  PubMed  Google Scholar 

  2. Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    CAS  PubMed  Google Scholar 

  3. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164. doi:10.2165/00007256–200333020–00005

    Article  PubMed  Google Scholar 

  4. Ahmaidi S, Granier P, Taoutaou Z et al (1996) Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc 28:450–456. doi:10.1097/00005768–199604000–00009

    CAS  PubMed  Google Scholar 

  5. Martin NA, Zoeller RF, Robertson RJ et al (1998) The comparative effects of sports massage, active recovery, and rest in promoting blood lactate clearance after supramaximal leg exercise. J Athl Train 33:30–35

    PubMed  Google Scholar 

  6. Baldari C (2004) Lactate removal during active recovery related to the individual anaerobic and ventilatory thresholds in soccer players. Eur J Appl Physiol 93:224–230. doi:10.1007/s00421–004–1203–5

    Article  PubMed  Google Scholar 

  7. Howatson G, Gaze D, van Someren KA (2005) The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand J Med Sci Sports 15:416–422. doi:10.1111/j.1600–0838.2005.00437.x

    Article  CAS  PubMed  Google Scholar 

  8. Sellwood KL, Brukner P, Williams D et al (2007) Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med 41:392–397. doi:10.1136/bjsm.2006.033985

    Article  PubMed  Google Scholar 

  9. Weerapong P, Hume PA, Kolt GS (2005) The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med 35:235–256. doi:10.2165/00007256–200535030–00004

    Article  PubMed  Google Scholar 

  10. Coffey V, Leveritt M, Gill N (2004) Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. J Sci Med Sport 7:1–10. doi:10.1016/S1440–2440(04)80038–0

    Article  CAS  PubMed  Google Scholar 

  11. Gill ND, Beaven CM, Cook C (2006) Effectiveness of post-match recovery strategies in rugby players. Br J Sports Med 40:260–263. doi:10.1136/bjsm.2005.022483

    Article  CAS  PubMed  Google Scholar 

  12. Dowzer CN, Reilly T, Cable NT (1998) Effects of deep and shallow water running on spinal shrinkage. Br J Sports Med 32:44–48

    Article  CAS  PubMed  Google Scholar 

  13. Mekjavic IB, Exner JA, Tesch PA et al (2000) Hyperbaric oxygen therapy does not affect recovery from delayed onset muscle soreness. Med Sci Sports Exerc 32:558–563. doi:10.1097/00005768–200003000–00002

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin Lanier A (2003) Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury. Sports Med 33:177–185. doi:10.2165/00007256–200333030–00002

    Article  PubMed  Google Scholar 

  15. Lattier G, Millet GY, Martin A et al (2004) Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions. Int J Sports Med 25:509–515. doi:10.1055/s-2004–820946

    Article  CAS  PubMed  Google Scholar 

  16. Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36:279–291. doi:10.2165/00007256–200636040–00001

    Article  PubMed  Google Scholar 

  17. Reilly T, Ekblom B (2005) The use of recovery methods post-exercise. J Sports Sci 23:619–627. doi:10.1080/02640410400021302

    Article  PubMed  Google Scholar 

  18. Spierer DK, Goldsmith R, Baran DA et al (2004) Effects of active vs passive recovery on work performed during serial supramaximal exercise tests. Int J Sports Med 25:109–114. doi:10.1055/s-2004–819954

    Article  CAS  PubMed  Google Scholar 

  19. Szumilak D, Sulowicz W, Walatek B (1998) Rhabdomyolysis: clinical features, causes, complications and treatment. Przegl Lek 55:274–279

    CAS  PubMed  Google Scholar 

  20. Wolf PL, Lott JA, Nitti GJ et al (1987) Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 20:73–77. doi:10.1016/S0009–9120(87)80102–9

    Article  CAS  PubMed  Google Scholar 

  21. Ide M, Tajima F, Furusawa K et al (1999) Wheelchair marathon racing causes striated muscle distress in individuals with spinal cord injury. Arch Phys Med Rehabil 80:324–327. doi:10.1016/S0003–9993(99)90145–4

    Article  CAS  PubMed  Google Scholar 

  22. Boros-Hatfaludy S, Fekete G, Apor P (1986) Metabolic enzyme activity patterns in muscle biopsy samples in different athletes. Eur J Appl Physiol Occup Physiol 55:334–338. doi:10.1007/BF02343809

    Article  CAS  PubMed  Google Scholar 

  23. MacDougall JD, Hicks AL, MacDonald JR et al (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84:2138–2142

    Article  CAS  PubMed  Google Scholar 

  24. Klapcinska B, Iskra J, Poprzecki S et al (2001) The effects of sprint (300 m) running on plasma lactate, uric acid, creatine kinase and lactate dehydrogenase in competitive hurdlers and untrained men. J Sports Med Phys Fitness 41:306–311

    CAS  PubMed  Google Scholar 

  25. Szabo A, Romvári R, Bogner P et al (2003) Metabolic changes induced by regular submaximal aerobic exercise in meat-type rabbits. Acta Vet Hung 51:503–512. doi:10.1556/AVet.51.2003.4.8

    Article  CAS  PubMed  Google Scholar 

  26. Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230. doi:10.1093/bmb/ldm014

    Article  PubMed  CAS  Google Scholar 

  27. Angelini C (2004) Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol 23:130–136

    CAS  PubMed  Google Scholar 

  28. Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210. doi:10.1016/j.pain.2006.05.018

    Article  PubMed  Google Scholar 

  29. Gur A, Karakoç M, Nas K et al (2002) Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci 17:57–61. doi:10.1007/s10103–002–8267–4

    Article  CAS  PubMed  Google Scholar 

  30. Lopes-Martins RA, Marcos RL, Leonardo PS et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288. doi:10.1152/japplphysiol.01318.2005

    Article  PubMed  Google Scholar 

  31. Enwemeka CS (2001) Attenuation and penetration depth of red 632.8 nm and invisible infrared 904 nm light in soft tissues. Laser Ther 13:95–101

    Google Scholar 

  32. Avni D, Levkovitz S, Maltz L et al (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277. doi:10.1089/pho.2005.23.273

    Article  CAS  PubMed  Google Scholar 

  33. Rizzi CF, Mauriz JL, Freitas Corrêa DS et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713. doi:10.1002/lsm.20371

    Article  PubMed  Google Scholar 

  34. Leal Junior ECP, Lopes-Martins R, Dalan F et al (2008) Effect of 655 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424. doi:10.1089/pho.2007.2160

    Article  PubMed  Google Scholar 

  35. Leal Junior ECP, Lopes-Martins R, Vanin A et al (2008) Effect of 830 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans (in press). Lasers Med Sci. doi:10.1007/s10103–008–0592–9

  36. Xu X, Zhao X, Liu TC, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202. doi:10.1089/pho.2007.2125

    Article  CAS  PubMed  Google Scholar 

  37. Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96. doi:10.1016/S0304–3959(03)00166–0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Cesar Pinto Leal Junior.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leal Junior, E.C.P., Lopes-Martins, R.Á.B., Baroni, B.M. et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24, 857 (2009). https://doi.org/10.1007/s10103-008-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-008-0633-4

Keywords

  • LLLT
  • Skeletal muscle
  • Skeletal muscle recovery
  • Blood lactate
  • Creatine kinase
  • Muscle damage
  • Sports