Abstract
The effects of neodymium:yttrium–aluminium–garnet (Nd:YAG) laser and silicon carbide (SiC) paper on the surface micro-topography of titanium-6 aluminium-4 vanadium (Ti6Al4V) alloy were examined in relation to the response of bone cells. The study was performed in three distinct stages: (1) after surface treatment of samples by laser and SiC paper, the surface hardness, surface roughness, corrosion resistance and surface tension were evaluated; (2) the growth of mouse connective tissue fibroblast cells (L-929) on untreated and treated samples was assessed in vitro; (3) the response of goat osteoblast cells to untreated and treated implanted samples was assessed in vivo. The surface roughness varied between 7 ± 0.02 for laser-treated samples (LTSs) at 140 J cm−2 and 21.8 ± 0.05 for mechanically treated samples (MTSs). The surface hardness was found to vary from 377 Vickers hardness number (VHN) for MTSs to 850 VHN for LTSs. A corrosion potential of −0.21V was achieved for the LTSs compared with −0.51V for the MTSs. The LTSs exhibited a more hydrophilic behaviour (i.e. wettability) than did the MTSs. No cytotoxicity effect, unlike for the MTSs, was observed for the LTSs. The results of in vivo tests indicated longitudinal growth of osteoblast cells along the grooves on the samples formed by the SiC paper, and multidirectional spreading of the cells on the LTSs.
Similar content being viewed by others
References
Buchter A, Joos U, Wiessman HP, Seper L, Meyer U (2006) Biological and biomechanical evaluation of interface reaction at conical screw-type implant. Head Face Med 2:5–18. doi:10.1186/1746–160X–2–5
Buchter A, Kleinheinz J, Wiesman HP, Kersken J, Nienkemper M, Weyhrother H, Joos U, Meyer U (2005) Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res 1:1–8
Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:96–101. doi:10.1007/s005860100282
Lavose-Valereto IC, Wolynec S, Deboni MC, Konig B Jr (2001) In vitro and in vivo biocompatibility testing of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating. J Biomed Mater Res 58:727–733. doi:10.1002/jbm.1072
Brunette DM, Cheroudi B (1999) The effects of the surface topography of micromachined titanium substrata on cell behaviour in vitro and in vivo. J Biomech Eng 121:49–57. doi:10.1115/1.2798042
Cheroudi B, Soorany E, Black N, Weston L (1995) Computer-assisted three-dimensional reconstruction of epithelial cells attached to percutaneous implant. J Biomed Mater Res 29:371–379. doi:10.1002/jbm.820290312
Curtis AS, Clark P (2001) The effect of topographic and mechanical properties of materials on cell behavior. Crit Rev Biocompat 9:1313–1329
Sowden D, Schmitz JP (2002) AO self-drilling and self-tapping screws in rat calvarial bone: an ultrastructural study of the implant interface. J Oral Maxillofac Surg 60:294–299. doi:10.1053/joms.2002.30585
Curtis AS, Wilkinson CD (1998) Reaction of cells to topography. J Biomater Sci Polym Ed 9:1311–1324. doi:10.1163/156856298X00415
Sighvi R, Wang DI (1998) Review: effects of substratum morphology on cell physiology. Biotechnol Bioeng 43:764–771. doi:10.1002/bit.260430811
Beraceras I, Alava I, Onate JI, Maezto MA (2002) Improved osseointegration in ion implantation-treated dental implants. Surf Coat Technol 158–159:28–36. doi:10.1016/S0257–8972(02)00203–7
Tian YS, Chen CZ, Yue TM, Wang ZL (2004) Study on microstructures and mechanical properties of in-situ formed multiphase coating by laser cladding of titanium alloy with silicon and graphite powder. Chin J Lasers 31:1–12
Khor KA, Vreeling A, Dong ZL, Cheang P (1999) Laser treatment of plasma sprayed HA coatings. Mater Sci Eng A 266:1–8. doi:10.1016/S0921–5093(99)00049–0
Tritca MS, Tarasenko V, Gakovic B, Fedenev A (2005) Surface modification of TiN coating by pulsed TEA CO2 and XeCl lasers. Appl Surf Sci 252:474–482. doi:10.1016/j.apsusc.2005.01.029
Hollander D, Walter M, Wirtz T, Paar O, Eril H (2005) Structural mechanical and in vitro characterization of individually structured Ti6Al4V produced by direct laser forming. Biomaterials 27:955–963. doi:10.1016/j.biomaterials.2005.07.041
Peyer P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Lemaitre C (2000) Surface modification induced in 316L steel by laser peening and shot-peening: influence of pitting corrosion. Mater Sci Eng 280:294–302. doi:10.1016/S0921–5093(99)00698–X
Tritca S, Gakovic M, Nenadovic M, Mitrovic M (2001) Surface modification of stainless steel by TEA CO2 laser. Appl Surf Sci 177:48–57. doi:10.1016/S0169–4332(01)00208–2
Khosroshahi ME, Valanejad A, Tavakoli J (2004) Evaluation of mid-IR laser radiation effect on 316L stainless steel corrosion resistance in physiological saline. Amirkabir J Sci Technol 15:107–115
Deppe H, Warmuth S, Heinrich A, Korner T (2005) Laser- assisted three dimensional surface modifications of titanium implants: preliminary data. Lasers Med Sci 19:229–233. doi:10.1007/s10103–005–0327–0
Arisu HD, Turkoz E, Bala O (2006) Effects of Nd:YAG laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180
Turner MW, Crouse PL, Li L (2007) Comparative interaction mechanisms for different laser systems with selected materials on titanium alloys. Appl Surf Sci 253:7992–7997. doi:10.1016/j.apsusc.2007.02.173
Mirhosseini N, Crouse PL, Schmidth MJJ, Garrod D (2007) Laser surface micro-texturing of Ti-6Al4V substrates for improved cell integration. Appl Surf Sci 253:7738–7743. doi:10.1016/j.apsusc.2007.02.168
Wieland M, Textor M, Spencer ND, Brunette DM (2001) Wavelength-roughness: a quantitative approach to characterizing the topography of rough titanium surfaces. Int J Oral Maxillofac Implants 16:163–181
Ifflander R (2001) Solid state lasers for material processing. Springer series in optical sciences.
Fan Y, Chen P, Yao YL, Yang Z, Egland K (2005) Effect of phase transformations on laser forming of Ti-6Al-4V alloy. J Appl Phys 98:1–10
Birte GS, Neubert A, Hopp M, Griepentrog M, Lange KP (2003) Fibroblast growth on surface modified dental implants: an in vitro study. J Biomed Mater Res 64A:591–599. doi:10.1002/jbm.a.10417
Sikavitsas VI, Dolder J, Bancroft G, Jansen J (2003) Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial size defect model. J Biomed Mater Res 67A:944–951. doi:10.1002/jbm.a.10126
Fischer P, Leber H, Romano V, Webber HP, Glardon R (2004) Microstructure of near-infrared pulsed laser sintered titanium samples. Appl Phys A Mater Sci Process A78:1219–1227
Ronold HJ, Lyngstadaas SP, Ellingsen JE (2003) A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone. J Biomed Mater Res 67A:524–530. doi:10.1002/jbm.a.10580
Peto G, Karacs A, Paszti Z, Guczi L, Diviny T, Joob A (2002) Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 186:7–13. doi:10.1016/S0169–4332(01)00769–3
Gyorgy E, Mihailesco IN, Serra P, Morenza JL (2002) Single pulse Nd:YAG laser irradiation of titanium: influence of laser intensity on surface morphology. Surf Coat Tech 154:63–67. doi:10.1016/S0257–8972(01)01699–1
Perez del Pino A, Serra P, Morenzo JL (2002) Oxidation of titanium through Nd:YAG laser irradiation. Appl Surf Sci 8129:1–4
Sitting C, Textor M, Spencer ND, Wieland M, Vallotton H (2000) Surface characterization of implant materials c.pTi, Ti-6Al-4V band Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med. 10:35–46 doi:10.1023/A:1008840026907
Bern L, English L, Fogarty J, Policoro R, Zsidi A, Vance J, Drelich J, White C, Dunahu S, Rohly K (2004) Effect of surface characteristics of metallic biomaterials on interaction with osteoblast cells. 7th World Biomatarials Congress, pp 1121–1122
Xiong L, Yang L (2003) Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J Biomed Mater Res. 66A:677–687 doi:10.1002/jbm.a.10022
Hao L, Lawerence J, Li L (2005) The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation. Appl Surf Sci 247:453–457. doi:10.1016/j.apsusc.2005.01.163
Hao L, Lawerence J, Li L (2005) Manipulation of the osteoblast response to a Ti-6Al-4V titanium alloy using a high power diode laser. Appl Surf Sci 247:602–606. doi:10.1016/j.apsusc.2005.01.165
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khosroshahi, M.E., Mahmoodi, M. & Saeedinasab, H. In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium–aluminium–garnet laser and silicon carbide paper. Lasers Med Sci 24, 925–939 (2009). https://doi.org/10.1007/s10103-008-0628-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10103-008-0628-1