Skip to main content
Log in

In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium–aluminium–garnet laser and silicon carbide paper

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effects of neodymium:yttrium–aluminium–garnet (Nd:YAG) laser and silicon carbide (SiC) paper on the surface micro-topography of titanium-6 aluminium-4 vanadium (Ti6Al4V) alloy were examined in relation to the response of bone cells. The study was performed in three distinct stages: (1) after surface treatment of samples by laser and SiC paper, the surface hardness, surface roughness, corrosion resistance and surface tension were evaluated; (2) the growth of mouse connective tissue fibroblast cells (L-929) on untreated and treated samples was assessed in vitro; (3) the response of goat osteoblast cells to untreated and treated implanted samples was assessed in vivo. The surface roughness varied between 7 ± 0.02 for laser-treated samples (LTSs) at 140 J cm−2 and 21.8 ± 0.05 for mechanically treated samples (MTSs). The surface hardness was found to vary from 377 Vickers hardness number (VHN) for MTSs to 850 VHN for LTSs. A corrosion potential of −0.21V was achieved for the LTSs compared with −0.51V for the MTSs. The LTSs exhibited a more hydrophilic behaviour (i.e. wettability) than did the MTSs. No cytotoxicity effect, unlike for the MTSs, was observed for the LTSs. The results of in vivo tests indicated longitudinal growth of osteoblast cells along the grooves on the samples formed by the SiC paper, and multidirectional spreading of the cells on the LTSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Buchter A, Joos U, Wiessman HP, Seper L, Meyer U (2006) Biological and biomechanical evaluation of interface reaction at conical screw-type implant. Head Face Med 2:5–18. doi:10.1186/1746–160X–2–5

    Article  PubMed  Google Scholar 

  2. Buchter A, Kleinheinz J, Wiesman HP, Kersken J, Nienkemper M, Weyhrother H, Joos U, Meyer U (2005) Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res 1:1–8

    Google Scholar 

  3. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:96–101. doi:10.1007/s005860100282

    Article  Google Scholar 

  4. Lavose-Valereto IC, Wolynec S, Deboni MC, Konig B Jr (2001) In vitro and in vivo biocompatibility testing of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating. J Biomed Mater Res 58:727–733. doi:10.1002/jbm.1072

    Article  Google Scholar 

  5. Brunette DM, Cheroudi B (1999) The effects of the surface topography of micromachined titanium substrata on cell behaviour in vitro and in vivo. J Biomech Eng 121:49–57. doi:10.1115/1.2798042

    Article  CAS  PubMed  Google Scholar 

  6. Cheroudi B, Soorany E, Black N, Weston L (1995) Computer-assisted three-dimensional reconstruction of epithelial cells attached to percutaneous implant. J Biomed Mater Res 29:371–379. doi:10.1002/jbm.820290312

    Article  Google Scholar 

  7. Curtis AS, Clark P (2001) The effect of topographic and mechanical properties of materials on cell behavior. Crit Rev Biocompat 9:1313–1329

    Google Scholar 

  8. Sowden D, Schmitz JP (2002) AO self-drilling and self-tapping screws in rat calvarial bone: an ultrastructural study of the implant interface. J Oral Maxillofac Surg 60:294–299. doi:10.1053/joms.2002.30585

    Article  PubMed  Google Scholar 

  9. Curtis AS, Wilkinson CD (1998) Reaction of cells to topography. J Biomater Sci Polym Ed 9:1311–1324. doi:10.1163/156856298X00415

    Article  Google Scholar 

  10. Sighvi R, Wang DI (1998) Review: effects of substratum morphology on cell physiology. Biotechnol Bioeng 43:764–771. doi:10.1002/bit.260430811

    Article  Google Scholar 

  11. Beraceras I, Alava I, Onate JI, Maezto MA (2002) Improved osseointegration in ion implantation-treated dental implants. Surf Coat Technol 158–159:28–36. doi:10.1016/S0257–8972(02)00203–7

    Article  Google Scholar 

  12. Tian YS, Chen CZ, Yue TM, Wang ZL (2004) Study on microstructures and mechanical properties of in-situ formed multiphase coating by laser cladding of titanium alloy with silicon and graphite powder. Chin J Lasers 31:1–12

    Google Scholar 

  13. Khor KA, Vreeling A, Dong ZL, Cheang P (1999) Laser treatment of plasma sprayed HA coatings. Mater Sci Eng A 266:1–8. doi:10.1016/S0921–5093(99)00049–0

    Article  Google Scholar 

  14. Tritca MS, Tarasenko V, Gakovic B, Fedenev A (2005) Surface modification of TiN coating by pulsed TEA CO2 and XeCl lasers. Appl Surf Sci 252:474–482. doi:10.1016/j.apsusc.2005.01.029

    Article  Google Scholar 

  15. Hollander D, Walter M, Wirtz T, Paar O, Eril H (2005) Structural mechanical and in vitro characterization of individually structured Ti6Al4V produced by direct laser forming. Biomaterials 27:955–963. doi:10.1016/j.biomaterials.2005.07.041

    Article  PubMed  Google Scholar 

  16. Peyer P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Lemaitre C (2000) Surface modification induced in 316L steel by laser peening and shot-peening: influence of pitting corrosion. Mater Sci Eng 280:294–302. doi:10.1016/S0921–5093(99)00698–X

    Article  Google Scholar 

  17. Tritca S, Gakovic M, Nenadovic M, Mitrovic M (2001) Surface modification of stainless steel by TEA CO2 laser. Appl Surf Sci 177:48–57. doi:10.1016/S0169–4332(01)00208–2

    Article  Google Scholar 

  18. Khosroshahi ME, Valanejad A, Tavakoli J (2004) Evaluation of mid-IR laser radiation effect on 316L stainless steel corrosion resistance in physiological saline. Amirkabir J Sci Technol 15:107–115

    Google Scholar 

  19. Deppe H, Warmuth S, Heinrich A, Korner T (2005) Laser- assisted three dimensional surface modifications of titanium implants: preliminary data. Lasers Med Sci 19:229–233. doi:10.1007/s10103–005–0327–0

    Article  PubMed  Google Scholar 

  20. Arisu HD, Turkoz E, Bala O (2006) Effects of Nd:YAG laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180

    Google Scholar 

  21. Turner MW, Crouse PL, Li L (2007) Comparative interaction mechanisms for different laser systems with selected materials on titanium alloys. Appl Surf Sci 253:7992–7997. doi:10.1016/j.apsusc.2007.02.173

    Article  CAS  Google Scholar 

  22. Mirhosseini N, Crouse PL, Schmidth MJJ, Garrod D (2007) Laser surface micro-texturing of Ti-6Al4V substrates for improved cell integration. Appl Surf Sci 253:7738–7743. doi:10.1016/j.apsusc.2007.02.168

    Article  CAS  Google Scholar 

  23. Wieland M, Textor M, Spencer ND, Brunette DM (2001) Wavelength-roughness: a quantitative approach to characterizing the topography of rough titanium surfaces. Int J Oral Maxillofac Implants 16:163–181

    CAS  PubMed  Google Scholar 

  24. Ifflander R (2001) Solid state lasers for material processing. Springer series in optical sciences.

  25. Fan Y, Chen P, Yao YL, Yang Z, Egland K (2005) Effect of phase transformations on laser forming of Ti-6Al-4V alloy. J Appl Phys 98:1–10

    Google Scholar 

  26. Birte GS, Neubert A, Hopp M, Griepentrog M, Lange KP (2003) Fibroblast growth on surface modified dental implants: an in vitro study. J Biomed Mater Res 64A:591–599. doi:10.1002/jbm.a.10417

    Article  Google Scholar 

  27. Sikavitsas VI, Dolder J, Bancroft G, Jansen J (2003) Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial size defect model. J Biomed Mater Res 67A:944–951. doi:10.1002/jbm.a.10126

    Article  CAS  Google Scholar 

  28. Fischer P, Leber H, Romano V, Webber HP, Glardon R (2004) Microstructure of near-infrared pulsed laser sintered titanium samples. Appl Phys A Mater Sci Process A78:1219–1227

    Google Scholar 

  29. Ronold HJ, Lyngstadaas SP, Ellingsen JE (2003) A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone. J Biomed Mater Res 67A:524–530. doi:10.1002/jbm.a.10580

    Article  CAS  Google Scholar 

  30. Peto G, Karacs A, Paszti Z, Guczi L, Diviny T, Joob A (2002) Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 186:7–13. doi:10.1016/S0169–4332(01)00769–3

    Article  CAS  Google Scholar 

  31. Gyorgy E, Mihailesco IN, Serra P, Morenza JL (2002) Single pulse Nd:YAG laser irradiation of titanium: influence of laser intensity on surface morphology. Surf Coat Tech 154:63–67. doi:10.1016/S0257–8972(01)01699–1

    Article  CAS  Google Scholar 

  32. Perez del Pino A, Serra P, Morenzo JL (2002) Oxidation of titanium through Nd:YAG laser irradiation. Appl Surf Sci 8129:1–4

    Google Scholar 

  33. Sitting C, Textor M, Spencer ND, Wieland M, Vallotton H (2000) Surface characterization of implant materials c.pTi, Ti-6Al-4V band Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med. 10:35–46 doi:10.1023/A:1008840026907

    Article  Google Scholar 

  34. Bern L, English L, Fogarty J, Policoro R, Zsidi A, Vance J, Drelich J, White C, Dunahu S, Rohly K (2004) Effect of surface characteristics of metallic biomaterials on interaction with osteoblast cells. 7th World Biomatarials Congress, pp 1121–1122

  35. Xiong L, Yang L (2003) Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J Biomed Mater Res. 66A:677–687 doi:10.1002/jbm.a.10022

    Article  Google Scholar 

  36. Hao L, Lawerence J, Li L (2005) The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation. Appl Surf Sci 247:453–457. doi:10.1016/j.apsusc.2005.01.163

    Article  CAS  Google Scholar 

  37. Hao L, Lawerence J, Li L (2005) Manipulation of the osteoblast response to a Ti-6Al-4V titanium alloy using a high power diode laser. Appl Surf Sci 247:602–606. doi:10.1016/j.apsusc.2005.01.165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosroshahi, M.E., Mahmoodi, M. & Saeedinasab, H. In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium–aluminium–garnet laser and silicon carbide paper. Lasers Med Sci 24, 925–939 (2009). https://doi.org/10.1007/s10103-008-0628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0628-1

Keywords

Navigation