Skip to main content

Advertisement

Log in

The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm2). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida Lopes L, Rigau J, Amaro Zângaro R, Guidugli Neto J, Martins Marques Jaeger M (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi:10.1002/lsm.1107

    Article  PubMed  CAS  Google Scholar 

  2. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. doi:10.1089/pho.2006.24.705

    Article  PubMed  CAS  Google Scholar 

  3. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715. doi:10.1002/lsm.20549

    Article  PubMed  Google Scholar 

  4. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106. doi:10.1089/pho.2006.2011

    Article  PubMed  Google Scholar 

  5. Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277–284

    Article  PubMed  Google Scholar 

  6. Corral-Baqués MI, Rigau T, Rivera MM, Rodríguez-Gil JE, Rigau J (2005) Effect of 655 nm diode laser on dog sperm motility. Lasers Med Sci 20:28–34. doi:10.1007/s10103-005-0332-3

    Article  PubMed  Google Scholar 

  7. Mushayandebvu T, Magier T, Murnick T, Bonder T, Weiss G, Colon J (1995) Sperm membrane response to hypo-osmotic challenge after laser optical trapping at high power. J Soc Gynecol Investig 2:370. doi:10.1016/1071-5576(95)94567-E

    Article  Google Scholar 

  8. Ebner T, Moser M, Yaman C, Sommergruber M, Tews G (2002) Successful birth after laser assisted immobilization of spermatozoa before intracytoplasmatic injection. Fertil Steril 78:417–418. doi:10.1016/S0015-0282(02)03208-9

    Article  PubMed  Google Scholar 

  9. Nascimento JM, Shi LZ, Meyers S, Gagneux P, Loskutoff NM, Botvinick EL, Berns MW (2008) The use of optical tweezers to study sperm competition and motility in primates. J R Soc Interface 5:297–302 doi:10.1098/rsif.2007.1118

    Article  PubMed  Google Scholar 

  10. Marín ML, Velez JR (1990) Efectos de la irradiación laser Helio Neon en semen bovino (minor thesis), Antioquia (Medellín), Facultad de Medicina Veterinaria y de Zootecnia, Universidad de Antioquia

  11. Iaffaldano N, Meluzzi A, Manchisi A, Passarella S (2005) Improvement of stored turkey semen quality as a result of He–Ne laser irradiation. Anim Reprod Sci 854):317–325

    PubMed  CAS  Google Scholar 

  12. Zan-Bar T, Bartoov B, Segal R, Yehuda R, Lavi R, Lubart R, Avtalion RR (2005) Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed Laser Surg 23:549–555. doi:10.1089/pho.2005.23.549

    Article  PubMed  CAS  Google Scholar 

  13. Lubart R, Breitbart H, Sofer Y, Cohen N, Friedmann H, Lavie R (2003) Light irradiation of sperm cells stimulates in-vitro fertilization, Joint International Laser Conference, Edinburgh (Scotland), pp 21–23

  14. Holt W, Watson P, Curry M, Holt C (1994) Reproducibility of computer-aided semen analysis: comparison of five different systems in a practical workshop. Fertil Steril 62:1277–1282

    PubMed  CAS  Google Scholar 

  15. Mortimer ST (2000) CASA – practical aspects. J Androl 21:515–524

    PubMed  CAS  Google Scholar 

  16. Abaigar T, Holt WV, Harrison RAP, del Barrio G (1999) Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol Reprod 60:32–41. doi:10.1095/biolreprod60.1.32

    Article  PubMed  CAS  Google Scholar 

  17. Holt W (1996) Can we predict fertility rates? Making sense of sperm motility. Reprod Domest Anim Physiol Pathol Biotechnol 31:1–342

    Google Scholar 

  18. Quintero-Moreno A (2003) Estudio sobre la dinámica de poblaciones espermáticas en semen de caballo, cerdo y conejo. Bellaterra Octubre 2003,doctoral thesis

  19. Quintero-Moreno A, Rigau T, Rodriguez-Gil JE (2004) Regression analysis and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61:673–690. doi:10.1016/S0093-691X(03)00248-6

    Article  PubMed  Google Scholar 

  20. Quintero-Moreno A, Rigau T, Rodriguez-Gil JE (2007) Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulation in rabbit semen and predict semen fertility and litter. Reprod Domest Anim 42:312–319. doi:10.1111/j.1439-0531.2006.00785.x

    Article  PubMed  CAS  Google Scholar 

  21. Rivera MM, Quintero-Moreno A, Barrera X, Palomo MJ, Rigau T, Rodríguez-Gil JE (2005) Natural Mediterranean photoperiod does not affect the main parameters of boar-semen quality analysis. Theriogenology 64:934–946

    Google Scholar 

  22. Feldman EC, Nelson RW (1996) Clinical and diagnostic evaluation of the male reproductive tract. In: Canine and feline endocrinology and reproduction, 2nd edn. Saunders, Philadelphia, pp: 673–690

  23. Zaneveld LJD, Polakoski KL (1977) Collection and physical examination of the ejaculate. In: Hafez ESE (ed) Techniques of human andrology, chap 6. Elsevier/North-Holland Biomedical Press

  24. Kumi-Diaka J (1993) Subjecting canine semen to the hypo-osmotic test. Theriogenology 39:1279–1289. doi:10.1016/0093-691X(93)90230-3

    Article  Google Scholar 

  25. England GC, Plummer JM (1993) Hypo-osmotic swelling of dog spermatozoa. J Reprod Fertil Suppl 47:261–270

    PubMed  CAS  Google Scholar 

  26. Rodríguez-Gil JE, Montserrat A, Rigau T (1994) Effects of hypoosmotic incubation on acrosome and tail structure on canine spermatozoa. Theriogenology 42:815–829. doi:10.1016/0093-691X(94)90450-W

    Article  PubMed  Google Scholar 

  27. Kumi-Diaka J, Badtram G (1994) Effect of storage on sperm membrane integrity and other functional characteristics of canine spermatozoa: in vitro bioassay for canine semen. Theriogenology 41:1355–1366. doi:10.1016/0093-691X(94)90187-N

    Article  PubMed  CAS  Google Scholar 

  28. Núñez-Martínez I, Moran JM, Peña FJ (2006) A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation. Reprod Domest Anim 41:408–415. doi:10.1111/j.1439-0531.2006.00685.x

    Article  PubMed  Google Scholar 

  29. Amat A, Rigau J, Waynant RW, Ilev IK, Tomas J, Anders JJ (2005) Modification of the intrinsic fluorescence and the biochemical behavior of ATP after irradiation with visible and near-infrared laser light. J Photochem Photobiol B 81:26–32. doi:10.1016/j.jphotobiol.2005.05.012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank SORISA for providing us with the laser and the power meter equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Corral-Baqués.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corral-Baqués, M.I., Rivera, M.M., Rigau, T. et al. The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power. Lasers Med Sci 24, 703–713 (2009). https://doi.org/10.1007/s10103-008-0606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0606-7

Keywords

Navigation