Skip to main content
Log in

Light sources for photodynamic inactivation of bacteria

  • Review
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Bacteria have an important role in human and animal morbidity, and a great number of them have developed antibiotic resistance. In the past recent years a new way of dealing with this problem has been studied: photodynamic inactivation. This method is based on administration of a photosensitizing substance that fixes itself in the bacterial cell followed by exposure to a light source. In the experiments done by many researchers on photodynamic inactivation of bacteria, both coherent and non-coherent light sources were used. This article is a review of these light sources and of some experimental results obtained by different authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gates FL (1929) A study of the bactericidal action of ultra violet light. J Gen Physiol 13:231–260, doi:10.1085/jgp.13.2.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jekler J, Bergbrant IM, Faergemann J, Larko O (1992) The in vitro effect of UVB radiation on skin bacteria in patients with atopic dermatitis. Acta Derm Venereol 72:33–36

    CAS  PubMed  Google Scholar 

  3. Sommer R, Lhotsky M, Haider T, Cabaj A (2000) UV inactivation, liquid–holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. J Food Prot 63(8):1015–1020

    CAS  PubMed  Google Scholar 

  4. Jori G, Brown SB (2004) Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 3:403–405, doi:10.1039/b311904c

    Article  CAS  PubMed  Google Scholar 

  5. Caminos DA, Spesia MB, Durantini EN (2006) Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochem Photobiol Sci 5:56–65, doi:10.1039/b513511g

    Article  CAS  PubMed  Google Scholar 

  6. Tak-Wah W, Yin-Yi W, Hamm-Ming S, Yin-Ching C (2005) Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob Agents Chemother 49:895–902, doi:10.1128/AAC.49.3.895-902.2005

    Article  Google Scholar 

  7. Tegos GP, Hamblin MR (2006) Phenothiazinium antimicrob photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 50:196–203

    Google Scholar 

  8. Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335, doi:10.1128/AAC.49.6.2329-2335.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsiao-Yin L, Chin-Tin C, Ching-Tsan H (2004) Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl Environ Microbiol 70:6453–6458, doi:10.1128/AEM.70.11.6453-6458.2004

    Article  Google Scholar 

  10. Lambrechts SAG, Aalders MCG, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 4995:2026–2034

    Article  Google Scholar 

  11. Banfi SE, Caruso A, Buccafurni L, Battini V, Zazzaron S, Barbieri P, Orlandi V (2006) Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol B 85:28–38, doi:10.1016/j.jphotobiol.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  12. Golding PS, King TA, Maddocks L, Drucker DB, Blinkhorn AS (1998) Photosensitization of Staphylococcus aureus with malachite green isothiocyanate: inactivation efficiency and spectroscopic analysis. J Photochem Photobiol B 47:202–210, doi:10.1016/S1011-1344(98)00224-3

    Article  CAS  PubMed  Google Scholar 

  13. Schäfer M, Schmitz C, Facius R, Horneck G, Milow B, Funken K-H, Ortner J (2000) Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol 71:514–523, doi:10.1562/0031-8655(2000)071<0514:SSOPIT>2.0.CO;2

  14. Osnat Feuerstein O, Moreinos D, Steinberg D (2006) Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. J Antimicrob Chemother 57:872–876, doi:10.1093/jac/dkl070

    Article  PubMed  Google Scholar 

  15. Matevski D, Weersink R, Tenenbaum HC, Wilson B, Ellen RP, Lepine G (2003) Lethal photosensitization of periodontal pathogens by a red-filtered xenon lamp in vitro. J Periodontal Res 38:428–435

    Article  PubMed  Google Scholar 

  16. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527, doi:10.1128/AAC.44.3.522-527.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashkenazi H, Yeshayahu N, Dezso G (2003) Photodynamic effects of antioxidant substituted porphyrin photosensitizers on gram-positive and -negative bacteria. Photochem Photobiol 77:186–191, doi:10.1562/0031-8655(2003)077<0186:PEOASP>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  18. Embleton ML, Nair PS, Cookson DB, Wilson M (2002) Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an igG-tin(IV) chlorine e6 conjugate. J Antimicrob Chemother 50:857–864, doi:10.1093/jac/dkf209

    Article  CAS  PubMed  Google Scholar 

  19. DeSimone NA, Christiansen C, Dore D (1999) Bactericidal effect of 0.95 mW helium-neon and 5-mW indium-gallium-aluminium-phosphate laser irradiation at exposure times of 30, 60, and 120 seconds on photosensitized staphylococcus aureus and pseudomonas aeruginosa In vitro. Phys Ther 7999:839–846

    Google Scholar 

  20. Embleton ML, Nair SP, Heywood W, Menon DC, Cookson BD, Wilson M (2005) Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 49:3690–3696, doi:10.1128/AAC.49.9.3690-3696.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Komerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem Photobiol 72:676–680, doi:10.1562/0031-8655(2000)072<0676:TEOPAO>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  22. Komerik N, Nakanishi H, Henderson B, Speight P, Wilson M (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasiliu E (1974) Laserii-revolutie in electronica, Ed. Tehnica, Bucuresti

  24. Cucurezeanu I, Laserii, Ed (1966) Academiei Republicii Socialiste Romania, Bucuresti

  25. Eaglesfield CC (10676) Laser light, Macmillan, London, Mellbourn, Toronto

  26. Beeslay MJ (1971) Lasers and their applications. Taylor & Francis, London

    Google Scholar 

  27. Griffiths MA, Wren BW, Wilson M (1997) Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phtalocyanine, a light-activated antimicrobial agent. J Antimicrob Chemother 40:873–876, doi:10.1093/jac/40.6.873

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho PT, Marques AP, dos Reis FA, Belchior AC, Silva IS, Habitante CA, Sussai DA (2006) Photodynamic inactivation of in vitro bacterial cultures from pressure ulcers. Acta Cir Bras 21 [Suppl 4]:32–35

    Google Scholar 

  29. Wilson BC, Patterson MS (1986) The physica of photodynamic therapy. Phys Med Biol 31:327–360, doi:10.1088/0031-9155/31/4/001

    Article  CAS  PubMed  Google Scholar 

  30. You C, Chern-Hsiung Lai (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18:51–55, doi:10.1007/s10103-002-0243-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Ministry of Education and Research by CEEX Programme no. 113/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Antonina Calin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calin, M.A., Parasca, S.V. Light sources for photodynamic inactivation of bacteria. Lasers Med Sci 24, 453–460 (2009). https://doi.org/10.1007/s10103-008-0588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0588-5

Keywords

Navigation