Lasers in Medical Science

, Volume 24, Issue 2, pp 284–289 | Cite as

Hematoporphyrin-mediated fluorescence reflectance imaging: application to early tumor detection in vivo in small animals

  • Maddalena Autiero
  • Rosanna Cozzolino
  • Paolo Laccetti
  • Marcello Marotta
  • Maria Quarto
  • Patrizia Riccio
  • Giuseppe Roberti
Brief Report

Abstract

The in vivo early detection of subcutaneous human tumors implanted in small animals was studied by laser-induced fluorescence reflectance imaging (FRI), with a hematoporphyrin (HP) compound as an exogenous optical contrast agent. Tumor detection was shown to be possible just 3 days after the inoculation of tumor cells, when tumors were neither visible nor palpable. However, this detection capability is limited to a temporal window of approximately 100 h from HP administration and to a low optical contrast of the tumor (<2).

Keywords

Hematoporphyrins Tumor Fluorescence Lasers Early diagnosis 

References

  1. 1.
    Berg K, Selbo PK, Weyrgand A, Dietze A, Prasmickaite L, Bonsted A, Engesaeter BO, Angell-Petersen E, Warloe T, Fraden N, Hogset A (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218:133–147PubMedCrossRefGoogle Scholar
  2. 2.
    Reynolds JS, Troy TL, Mayer RH, Thompson AB, Waters DJ, Cornell KK, Snyder PW, Sevick-Muraca EM (1999) Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 70:87–94PubMedCrossRefGoogle Scholar
  3. 3.
    Alian W, Andersson-Engels S, Svanberg K, Svanberg S (1994) Laser-induced fluorescence studies of meso-tetra(hydroxyphenyl)chlorin in malignant and normal tissue in rats. Br J Cancer 70:880–885PubMedGoogle Scholar
  4. 4.
    Svanberg K, Andersson T, Killander D, Wang I, Stenram U, Andersson-Engels S, Berg R, Johansson J, Svamberg S (1994) Photodynamic therapy of nonmelanoma malignant tumours of the skin using topical delta-amino levulinic acid sensitization and laser irradiation. Br J Dermatol 130:743–751PubMedCrossRefGoogle Scholar
  5. 5.
    Reddi E, Segalla A, Jori G, Kerrigan PK, Liddell PA, Moore Al, Moore TA, Gust D (1994) Carotenoporphyrins as selective photodiagnostic agents for tumours. Br J Cancer 69:40–45PubMedGoogle Scholar
  6. 6.
    Takemura T, Nakajima S, Sakata I (1994) Tumor-localizing fluorescent diagnostic agents without phototoxicity. Photochem Photobiol 59:366–370PubMedCrossRefGoogle Scholar
  7. 7.
    Jori G, Beltrami M, Reddi E, Salvato B, Pagnan A, Ziron L, Tomio L, Tsanov T (1984) Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett 24:291–297PubMedCrossRefGoogle Scholar
  8. 8.
    Musser DA, Wagner JM, Datta-Cupta M (1982) The interaction of tumor localizing porphyrins with collagen and elastin. Res Commun Chem Pathol Pharmacol 36:251–259PubMedGoogle Scholar
  9. 9.
    Musser DA, Wagner JM, Weber FJ, Datta-Cupta N (1980) The binding of tumor localizing porphyrins to a fibrin matrix and their effects following photoirradiation. Res Commun Chem Pathol Pharmacol 28:505–526PubMedGoogle Scholar
  10. 10.
    Evensen JF, Sommer S, Moan J, Christensen T (1984) Tumor-localizing and photosensitizing properties of the main components of hematoporphyrin derivative. Cancer Res 44:482–486PubMedGoogle Scholar
  11. 11.
    Kessel D (1982) Components of hematoporphyrin derivatives and their tumor localizing capacity. Cancer Res 42:1703–1706PubMedGoogle Scholar
  12. 12.
    Moan J, Christensen T (1981) Cellular uptake and photodynamic effect of hematoporphyrin. Photobiochem Photobiophys 2:291–299Google Scholar
  13. 13.
    Kessel D (1986) Porphyrin-lipoprotein association as a factor in porphyrin localization. Cancer Lett 33:183–188PubMedCrossRefGoogle Scholar
  14. 14.
    Darnell J, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New YorkGoogle Scholar
  15. 15.
    Korbelik M, Hung J, Lam S, Palcic B (1990) The effects of low density lipoproteins on uptake of Photofrin II. Photochem Photobiol 51:191–196PubMedCrossRefGoogle Scholar
  16. 16.
    Chang C, Dougherty TJ (1978) Photoradiation therapy: kinetics and thermodynamics of porphyrin uptake and loss in normal and malignant cells in culture. Radiat Res 74:498–506Google Scholar
  17. 17.
    Andersson-Engels S, Klinteberg C, Svanberg K, Svanberg S (1997) In vivo fluorescence imaging for tissue diagnostics. Phys Med Biol 42:815–824PubMedCrossRefGoogle Scholar
  18. 18.
    Andersson-Engels S, Ankerst J, Johansson J, Svanberg K, Svanberg S (1989) Tumour marking properties of different haematoporphyrins and tetrasulfonated phthalocyanine—a comparison. Lasers Med Sci 4:115–123CrossRefGoogle Scholar
  19. 19.
    Celentano L, Laccetti P, Liuzzi R, Mettivier G, Montesi MC, Autiero M, Riccio P, Roberti G, Russo P, Salvatore M (2003) Preliminary tests of a prototype system for optical and radionuclide imaging in small animals. IEEE Trans Nucl Sci 73:1693–1701CrossRefGoogle Scholar
  20. 20.
    Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, Russo P (2005) Experimental study on in vivo optical and radionuclide imaging in small animals. IEEE Trans Nucl Sci 52:205–209CrossRefGoogle Scholar
  21. 21.
    Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, Montesi MC, Quarto M, Riccio P, Roberti G, Russo P (2007) Early detection of tumor masses by in vivo hematoporphyrin mediated fluorescence imaging. Nucl Instrum Methods Phys Res A 571:392–395CrossRefGoogle Scholar
  22. 22.
    Autiero M, Celentano L, Laccetti P, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, Russo P (2005) In vivo macroscopic HPD fluorescence reflectance imaging on small animals bearing surface ARO/NPA tumor. Proc SPIE OSA Biomed Opt 5859:1–9Google Scholar
  23. 23.
    Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, Russo P (2006) A multimodal system for in vivo tumor imaging in mice. Proc SPIE 6191–53:1F–12FGoogle Scholar
  24. 24.
    Troy T, Jerik-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–23PubMedCrossRefGoogle Scholar
  25. 25.
    Park JM, Gambhir SS (2005) Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging. Proc IEEE 93:771–783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Maddalena Autiero
    • 1
  • Rosanna Cozzolino
    • 2
  • Paolo Laccetti
    • 2
  • Marcello Marotta
    • 3
  • Maria Quarto
    • 1
  • Patrizia Riccio
    • 4
    • 5
  • Giuseppe Roberti
    • 1
    • 5
  1. 1.Dipartimento di Scienze FisicheUniversità di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Biologia Strutturale e FunzionaleUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Medicina Clinica e SperimentaleUniversità di Napoli Federico IINaplesItaly
  4. 4.Dipartimento di Biologia e Patologia Cellulare e MolecolareUniversità di Napoli Federico IINaplesItaly
  5. 5.Consorzio Nazionale Interuniversitario per le Scienze Fisiche della MateriaNaplesItaly

Personalised recommendations