Abstract
The use of lasers, over the past few decades, has emerged to be highly promising for cancer therapy modalities, most commonly the photothermal therapy method, which employs light absorbing dyes for achieving the photothermal damage of tumors, and the photodynamic therapy, which employs chemical photosensitizers that generate singlet oxygen that is capable of tumor destruction. However, recent advances in the field of nanoscience have seen the emergence of noble metal nanostructures with unique photophysical properties, well suited for applications in cancer phototherapy. Noble metal nanoparticles, on account of the phenomenon of surface plasmon resonance, possess strongly enhanced visible and near-infrared light absorption, several orders of magnitude more intense compared to conventional laser phototherapy agents. The use of plasmonic nanoparticles as highly enhanced photoabsorbing agents has thus introduced a much more selective and efficient cancer therapy strategy, viz. plasmonic photothermal therapy (PPTT). The synthetic tunability of the optothermal properties and the bio-targeting abilities of the plasmonic gold nanostructures make the PPTT method furthermore promising. In this review, we discuss the development of the PPTT method with special emphasis on the recent in vitro and in vivo success using gold nanospheres coupled with visible lasers and gold nanorods and silica–gold nanoshells coupled with near-infrared lasers.
This is a preview of subscription content, access via your institution.






References
Breasted JH (1930) The Edwin Smith surgical papyrus, vol 1. University of Chicago
Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology (Easton, Pa.) 217:633–646
GoldBerg SN (2001) Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound 13(2):129–147
Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J Vasc Interv Radiol 12:1021–1032
Mirza AN, Fornage BD, Sneige N, Kuerer HM, Newman LA, Ames FC, Singletary SE (2001) Radiofrequency ablation of solid tumors. Cancer J 7:95–102
Seegenschmiedt MH, Brady LW, Sauer R (1990) Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 13(4):352–363
Urano M, Douple E (1992) Physics of microwave hyperthermia in hyperthermia and oncology, vol 3. Springer, Utrecht, The Netherlands, pp 11–98
Sato M, Watanabe Y, Ueda S, Iseki S, Abe Y, Sato N, Kimura S, Okubo K, Onji M (1996) Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 110(5):1507–1514
Seki T, Wakabayashi M, Nakagawa N, Imamura M, Tamai T, Nishimura A, Yamashiki N, Okamura A, Inoue K (1999) Percutaneous microwave coagulation therapy for patients with small hepatocellular carcinoma, Comparison with percutaneous ethanol injection therapy. Cancer (Philadelphia) 85:1694–1702
Kremkau FW (1979) Cancer therapy with ultrasound: a historical review. J Clin Ultrasound 7(4):287–300
Huber P, Debus J, Jenne J, Jochle K, van Kaick G, Lorenz WJ, Wannenmacher M (1996) Therapeutic ultrasound in tumor therapy. Principles, applications and new development. Radiologe 36(1):64–71
Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, Wang ZB (2001) Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 27(8):1099–1106
Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5:121–128
Gould RG (1959) The LASER, light amplification by stimulated emission of radiation. The Ann Arbor Conference on Optical Pumping
Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494
Kapany NS, Peppers NA, Zweng HC, Flocks M (1963) Retinal photocoagulation by Lasers. Nature 199:146–149
Minton JP, Carlton DM, Dearman JR, McKnight WB, Ketcham AS (1965) An evaluation of the physical response of malignant tumor implants to pulsed laser radiation. Surg Gynaecol Obstet 121:538–544
Goldman L (1967) Biomedical aspects of the laser. Springer, New York
Goldman L, Rockwell RJ Jr (1968) Laser Systems and their applications in medicine and biology. Adv Biomed Eng Med Phys 1:317–382
Mullens F, Jennings B, McClusky L (1968) Incision of tissue by carbon dioxide laser. Am Surg 34:717–729
McKenziei AL (1984) Lasers in surgery and medicine. Phys Med Biol 29(6):619–641
Boulnois JL (1986) Photophysical processes in recent medical laser developments. Lasers Med Sci 1(1):47–66
Sultan RA (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193
Gibson KF, Kernohan WG (1993) Lasers in medicine. J Med Eng Technol 17(2):51–57
Brunetaud JM, Mordon S, Maunoury V, Beacco C (1995) Non-PDT uses of lasers in oncology. Lasers Med Sci 10:3–8
Bown SG (1983) Phototherapy of tumours. World J Surg 7:700–709
Steger AC, Lees WR, Walmsley K, Bown SG (1989) Interstitial laser hyperthermia: a new approach to local destruction of tumours. BMJ 299(6695):362–365
Masters A, Bown SG (1990) Interstitial laser hyperthermia in tumour therapy. Ann Chir Gynaecol 79(4):244–251
Masters A, Bown SG (1990) Interstitial laser hyperthermia in the treatment of tumours. Lasers Med Sci 5:129–136
Masters A, Bown SG (1992) Interstitial laser hyperthermia. Br J Cancer 8(4):242–249
Siegman AE (1986) Lasers, University Science Books. ISBN 0-935702-11-3
Silfvast WT (1996) Laser fundamentals, Cambridge University Press. ISBN 0-521-55617-1
Svelto O (1998) Principles of lasers, 4th edn. (trans. David Hanna). Springer. ISBN 0-306-45748
Wilson BC (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360
Danniell MD, Hill JS (1991) A history of PDT. Aust N Z J Surg 61:340–348
Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55(1):145–157
Ochsner MJ (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. Photochem Photobiol B 39(1):1–18
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamics therapy. J Natl Cancer Inst 90(12):889–905
Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387
Gold MH (2006) Introduction to photodynamic therapy: early experience. Dermatol Clin 25(1):1–4
Kim IK, Miller JW (2006) Photodynamic therapy. Intraocular Drug Delivery 129–141
Raab O (1900) The effect of fluorescent substances on infusoria. Z Biol 39:524–526
Jesionek A, Tappeiner VH (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Muench Med Wochneshr 47:2042–2044
Hausman W (1911) Die sensibilisierende wirkung deshemato-porphyrins. Biochem Z 30:276–286
Figge FHJ, Weiland GS, Manganiello LOJ (1948) Affinity of neoplastic embryonic and traumatized tissue for metalloporphyrins. Proc Soc Exp Biol Med 68:640–641
Lipson RL, Baldes EJ (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82:508–516
Lipson RL, Baldes EJ (1961) Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J Thorac Cardiovasc Surg 42:623–629
Moan J (1986) Porphyrin photosensitization and phototherapy. Photochem Photobiol 43:681–690
Vicente MGH (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: recent progress. Curr Med Chem Anti-Cancer Agents 1(2):175–194
Dougherty TJ (1996) A brief history of clinical photodynamic therapy development at Roswell Park cancer institute. J Clin Laser Med 14:219–221
Stilts CE, Nelen MI, Hilmey DG, Davies SR, Gollnick SO, Oseroff AR, Gibson SL, Hilf R, Detty MR (2000) Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. Med Chem 43(12):2403–2410
Spikes JD (1990) New trends in photobiology (invited review). Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B Biol:259–274
Rosenthal I (1990) Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 51:351–356
Bonnett R (1995) porphyrin and phthalocyanine photosensitizers for photodynamic therapy. Chem Soc Rev 24:19–33
Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527
Parrish JA, Anderson RR, Harrist T, Paul B, Murphy GF (1983) Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol 80:75s–80s
Welch AJ (1984) The thermal response of laser-irradiated tissue. IEEE J Quantum Electron 12:1471–1475
Jori G, Spikes JD (1990) Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B Biol 6:93–101
Soncin M, Busetti A, Fusi F, Jori G, Rodgers MAJ (1999) Irradiation of amelanotic melanoma cells with 532 nm high peak power pulsed laser radiation in the presence of the photothermal sensitiser Cu [II]-haematoporphyrin: a new approach to cell photoinactivation. Photochem Photobiol 69:708–712
Camerin M, Rello S, Villanueva A, Ping X, Kenney ME, Rodgers MAJ, Jori G (2005) Photothermal sensitisation as a novel therapeutic approach for tumours: studies at the cellular and animal level. Eur J Cancer 41:1203–1212
Camerin M, Rodgers MAJ, Kenney ME, Jori G (2005) Photothermal sensitisation: evidence for the lack of oxygen effect on the photosensitizing activity. Photochem Photobiol Sci 4:251–253
Welch AJ (1984) The thermal response of laser irradiated tissue. IEEE J Quantum Electron 20:1471–1481
Jacques SL, Prahl SA (1987) Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med 6:494–503
Sturersson C, Andersson-Engels S (1995) A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Phys Med Biol 40:2037–2052
He X, Bischof JC (2003) Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng 31:355–422
Anderson RR, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1:263–276
Greenwald J, Rosen S, Anderson, RR, Harrist T, MacFarland F, Noe J, Parrish JA (1981) Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol 77:305–310
Anderson RR, Parrish JA (1983) Selective photothermolysis: precise micro-surgery by selective absorption of pulsed radiation. Science 200:524–527
Morelli JG, Tan OT, Garden J, Margolis R, Seki Y, Bol J, Carney JM, Anderson ŔR, Furumoto H, Parrish JA (1986) Tunable dye laser (577 nm) treatment of port wine stains. Lasers Surg Med 6:94–99
Polla LL, Margolis RJ, Dover JS, Whitaker D, Murphy GF, Jacques SL, Anderson RR (1987) Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin. J Invest Dermatol 89:281–286
Ara G, Anderson R, Mandel K, Oseroff AR (1988) Absorption of ns photoradiation of melanosomes generates acoustic waves and induces pigmented melanoma cell toxicity. Photochem Photobiol 47:37S–40S
Chen WR, Adams RL, Heaton E, Dickey DT, Bartels KE, Nordquist RE (1995) Chromophore-enhanced laser tumor tissue photothermal interaction using an 808 nm diode laser. Cancer Lett 88:15–19
Chen WR, Adams RL, Bartels KE, Nordquist RE (1995) Chromophore-enhanced in vivo tumor cell destruction using an SOS-nm diode laser. Cancer Lett 94:125–131
Jori G, Schindl L, Schindl A, Polo L (1996) Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized processes in vivo. J Photochem Photobiol A Chem 102:101–107
Jori G, Spikes JD (1990) Photothermal sensitizers: possible use in tumour therapy. J Photochem Photobiol B Biol 6:93–101
El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264
Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed Engl 40:4128–4158
Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292
Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348
Warren CWC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46
Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27
Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108
Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032
Zharov VP, Galitovsky V, Viegas M (2003) Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 83(24):4897–4899
Zharov VP, Galitovskaya E, Viegas M (2004) Photothermal guidance for selective photothermolysis with nanoparticles. Proc SPIE 5319:291–300
Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315
Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226
El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135
Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells using immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417
Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179
Huang X, El-Sayed IH, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120
Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 35(5):500–501
Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435
Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132
Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near infrared thermal therapy of tumors under MR Guidance. Proc Natl Acad Sci 100:13549–13554
Loo CH, Lin A, Hirsch LR, Lee MH, Barton J, Halas NJ, West J, Drezek RA (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech Cancer Res Treat 3:33–40
O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared absorbing nanoshells. Cancer Lett 209:171–176
Loo C, Lowery A, Halas NJ, West JL, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711
Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xie Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261
Hu M, Petrova H, Chen J, McLellan JM, Siekkinen AR, Marquez M, Li X, Xia Y, Hartland GV (2006) Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 110(4):1520–1524
Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605
Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans 147:145–181
Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:551951
Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York
Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271
Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York
Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Heidelberg New York
Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426
Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217
Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453
S Link, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366
Mie G (1908) Contribution to the optics of turbid media, especially colloidal metal suspensions. Ann Phys 25:377–445
Gans R (1915) Form of ultramicroscopic particles of silver. Ann Phys 47:270–284
Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077
Link S, El-Sayed MA (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109:10531–10532 (erratum)
Murphy CJ, Sau TK, Gole A, Orendorff CJ, Gao J, Gou L, Hunyadi S, Li T (2005) Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870
Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247
Prodan EM, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248
Du H, Fuh RA, Li J, Corkan A, Lindsey JS (1998) PhotochemCAD††: a computer-aided design and research tool in photochemistry. Photochem Photobiol 68:141–142
Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317
Lin CP, Kelly MW (1998) Cavitation and acoustic emission around laser-heated microparticles. Appl Phys Lett 72:2800–2802
Lin CP, Kelly MW, Sibayan SAB, Latina MA, Anderson RR (1999) Selective cell killing by microparticle absorption of pulsed laser radiation. IEEE J Quantum Electron 5:963–968
Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347
Maeda H (2001) The enhanced permeability and Retention (EPR) effect in tumor Vasculature: the key role of Tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207
Maedaa H, Fanga J, Inutsukaa T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328
Fang J, Sawa T, Maeda H (2003) Factors and mechanism of “EPR”effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 519:29–49
Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183
Greish K, Sawa T, Fang J, Akaike T, Maeda H (2004) SMAdoxorubicin, a new polymeric micellar drug for effective targeting to solid tumors. J Control Release 97:219–230
McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594
Kommareddy S, Amiji M (2007) Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci 96(2):397–407
Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotech 24(2):62–67
Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti–epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004
Sokolov K, Aaron J, Hsu B, Nida D, Gillanwater A, Follen M, Macaulay C, Adler-Storthz K, Korgel B, Discour M, Pasqualini R, Arap W, Lam W, Richartz-Kortum R (2003) Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat 2(6):491–504
Hayat MA (1989) Colloidal gold: principles, methods and applications, vol 1 edn. Academic, San Diego
El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834
Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374
Ai H, Fang M, Jones SA, Lvov YM (2002) Electrostatic layer-by-layer nanoassembly on biological microtemplates: platelets. Biomacromolecules 3:560–564
Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13:3427–3433
Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641
Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51
Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259
O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon, KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596
Acknowledgment
We thank the financial support of NCI Center of Cancer Nanotechnology Excellence (CCNE) Award (U54CA119338).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, X., Jain, P.K., El-Sayed, I.H. et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23, 217–228 (2008). https://doi.org/10.1007/s10103-007-0470-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10103-007-0470-x
Keywords
- Surface plasmon resonance (SPR)
- Plasmonic photothermal therapy (PPTT)
- Cancer
- Gold nanospheres
- Gold nanorods
- Gold nanoshells
- Immunotargeting