Plasmonic photothermal therapy (PPTT) using gold nanoparticles

  • Xiaohua Huang
  • Prashant K. Jain
  • Ivan H. El-Sayed
  • Mostafa A. El-Sayed
Review Article

Abstract

The use of lasers, over the past few decades, has emerged to be highly promising for cancer therapy modalities, most commonly the photothermal therapy method, which employs light absorbing dyes for achieving the photothermal damage of tumors, and the photodynamic therapy, which employs chemical photosensitizers that generate singlet oxygen that is capable of tumor destruction. However, recent advances in the field of nanoscience have seen the emergence of noble metal nanostructures with unique photophysical properties, well suited for applications in cancer phototherapy. Noble metal nanoparticles, on account of the phenomenon of surface plasmon resonance, possess strongly enhanced visible and near-infrared light absorption, several orders of magnitude more intense compared to conventional laser phototherapy agents. The use of plasmonic nanoparticles as highly enhanced photoabsorbing agents has thus introduced a much more selective and efficient cancer therapy strategy, viz. plasmonic photothermal therapy (PPTT). The synthetic tunability of the optothermal properties and the bio-targeting abilities of the plasmonic gold nanostructures make the PPTT method furthermore promising. In this review, we discuss the development of the PPTT method with special emphasis on the recent in vitro and in vivo success using gold nanospheres coupled with visible lasers and gold nanorods and silica–gold nanoshells coupled with near-infrared lasers.

Keywords

Surface plasmon resonance (SPR) Plasmonic photothermal therapy (PPTT) Cancer Gold nanospheres Gold nanorods Gold nanoshells Immunotargeting 

References

  1. 1.
    Breasted JH (1930) The Edwin Smith surgical papyrus, vol 1. University of ChicagoGoogle Scholar
  2. 2.
    Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology (Easton, Pa.) 217:633–646Google Scholar
  3. 3.
    GoldBerg SN (2001) Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound 13(2):129–147PubMedGoogle Scholar
  4. 4.
    Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J Vasc Interv Radiol 12:1021–1032Google Scholar
  5. 5.
    Mirza AN, Fornage BD, Sneige N, Kuerer HM, Newman LA, Ames FC, Singletary SE (2001) Radiofrequency ablation of solid tumors. Cancer J 7:95–102PubMedGoogle Scholar
  6. 6.
    Seegenschmiedt MH, Brady LW, Sauer R (1990) Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 13(4):352–363PubMedGoogle Scholar
  7. 7.
    Urano M, Douple E (1992) Physics of microwave hyperthermia in hyperthermia and oncology, vol 3. Springer, Utrecht, The Netherlands, pp 11–98Google Scholar
  8. 8.
    Sato M, Watanabe Y, Ueda S, Iseki S, Abe Y, Sato N, Kimura S, Okubo K, Onji M (1996) Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 110(5):1507–1514PubMedGoogle Scholar
  9. 9.
    Seki T, Wakabayashi M, Nakagawa N, Imamura M, Tamai T, Nishimura A, Yamashiki N, Okamura A, Inoue K (1999) Percutaneous microwave coagulation therapy for patients with small hepatocellular carcinoma, Comparison with percutaneous ethanol injection therapy. Cancer (Philadelphia) 85:1694–1702Google Scholar
  10. 10.
    Kremkau FW (1979) Cancer therapy with ultrasound: a historical review. J Clin Ultrasound 7(4):287–300PubMedGoogle Scholar
  11. 11.
    Huber P, Debus J, Jenne J, Jochle K, van Kaick G, Lorenz WJ, Wannenmacher M (1996) Therapeutic ultrasound in tumor therapy. Principles, applications and new development. Radiologe 36(1):64–71PubMedGoogle Scholar
  12. 12.
    Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, Wang ZB (2001) Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 27(8):1099–1106PubMedGoogle Scholar
  13. 13.
    Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5:121–128Google Scholar
  14. 14.
    Gould RG (1959) The LASER, light amplification by stimulated emission of radiation. The Ann Arbor Conference on Optical PumpingGoogle Scholar
  15. 15.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494Google Scholar
  16. 16.
    Kapany NS, Peppers NA, Zweng HC, Flocks M (1963) Retinal photocoagulation by Lasers. Nature 199:146–149PubMedGoogle Scholar
  17. 17.
    Minton JP, Carlton DM, Dearman JR, McKnight WB, Ketcham AS (1965) An evaluation of the physical response of malignant tumor implants to pulsed laser radiation. Surg Gynaecol Obstet 121:538–544Google Scholar
  18. 18.
    Goldman L (1967) Biomedical aspects of the laser. Springer, New YorkGoogle Scholar
  19. 19.
    Goldman L, Rockwell RJ Jr (1968) Laser Systems and their applications in medicine and biology. Adv Biomed Eng Med Phys 1:317–382PubMedGoogle Scholar
  20. 20.
    Mullens F, Jennings B, McClusky L (1968) Incision of tissue by carbon dioxide laser. Am Surg 34:717–729Google Scholar
  21. 21.
    McKenziei AL (1984) Lasers in surgery and medicine. Phys Med Biol 29(6):619–641Google Scholar
  22. 22.
    Boulnois JL (1986) Photophysical processes in recent medical laser developments. Lasers Med Sci 1(1):47–66Google Scholar
  23. 23.
    Sultan RA (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193Google Scholar
  24. 24.
    Gibson KF, Kernohan WG (1993) Lasers in medicine. J Med Eng Technol 17(2):51–57PubMedGoogle Scholar
  25. 25.
    Brunetaud JM, Mordon S, Maunoury V, Beacco C (1995) Non-PDT uses of lasers in oncology. Lasers Med Sci 10:3–8Google Scholar
  26. 26.
    Bown SG (1983) Phototherapy of tumours. World J Surg 7:700–709PubMedGoogle Scholar
  27. 27.
    Steger AC, Lees WR, Walmsley K, Bown SG (1989) Interstitial laser hyperthermia: a new approach to local destruction of tumours. BMJ 299(6695):362–365PubMedGoogle Scholar
  28. 28.
    Masters A, Bown SG (1990) Interstitial laser hyperthermia in tumour therapy. Ann Chir Gynaecol 79(4):244–251PubMedGoogle Scholar
  29. 29.
    Masters A, Bown SG (1990) Interstitial laser hyperthermia in the treatment of tumours. Lasers Med Sci 5:129–136Google Scholar
  30. 30.
    Masters A, Bown SG (1992) Interstitial laser hyperthermia. Br J Cancer 8(4):242–249Google Scholar
  31. 31.
    Siegman AE (1986) Lasers, University Science Books. ISBN 0-935702-11-3Google Scholar
  32. 32.
    Silfvast WT (1996) Laser fundamentals, Cambridge University Press. ISBN 0-521-55617-1Google Scholar
  33. 33.
    Svelto O (1998) Principles of lasers, 4th edn. (trans. David Hanna). Springer. ISBN 0-306-45748Google Scholar
  34. 34.
    Wilson BC (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360PubMedGoogle Scholar
  35. 35.
    Danniell MD, Hill JS (1991) A history of PDT. Aust N Z J Surg 61:340–348Google Scholar
  36. 36.
    Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55(1):145–157PubMedGoogle Scholar
  37. 37.
    Ochsner MJ (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. Photochem Photobiol B 39(1):1–18Google Scholar
  38. 38.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamics therapy. J Natl Cancer Inst 90(12):889–905PubMedGoogle Scholar
  39. 39.
    Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387PubMedGoogle Scholar
  40. 40.
    Gold MH (2006) Introduction to photodynamic therapy: early experience. Dermatol Clin 25(1):1–4Google Scholar
  41. 41.
    Kim IK, Miller JW (2006) Photodynamic therapy. Intraocular Drug Delivery 129–141Google Scholar
  42. 42.
    Raab O (1900) The effect of fluorescent substances on infusoria. Z Biol 39:524–526Google Scholar
  43. 43.
    Jesionek A, Tappeiner VH (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Muench Med Wochneshr 47:2042–2044Google Scholar
  44. 44.
    Hausman W (1911) Die sensibilisierende wirkung deshemato-porphyrins. Biochem Z 30:276–286Google Scholar
  45. 45.
    Figge FHJ, Weiland GS, Manganiello LOJ (1948) Affinity of neoplastic embryonic and traumatized tissue for metalloporphyrins. Proc Soc Exp Biol Med 68:640–641PubMedGoogle Scholar
  46. 46.
    Lipson RL, Baldes EJ (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82:508–516PubMedGoogle Scholar
  47. 47.
    Lipson RL, Baldes EJ (1961) Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J Thorac Cardiovasc Surg 42:623–629PubMedGoogle Scholar
  48. 48.
    Moan J (1986) Porphyrin photosensitization and phototherapy. Photochem Photobiol 43:681–690PubMedGoogle Scholar
  49. 49.
    Vicente MGH (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: recent progress. Curr Med Chem Anti-Cancer Agents 1(2):175–194Google Scholar
  50. 50.
    Dougherty TJ (1996) A brief history of clinical photodynamic therapy development at Roswell Park cancer institute. J Clin Laser Med 14:219–221Google Scholar
  51. 51.
    Stilts CE, Nelen MI, Hilmey DG, Davies SR, Gollnick SO, Oseroff AR, Gibson SL, Hilf R, Detty MR (2000) Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. Med Chem 43(12):2403–2410Google Scholar
  52. 52.
    Spikes JD (1990) New trends in photobiology (invited review). Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B Biol:259–274Google Scholar
  53. 53.
    Rosenthal I (1990) Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 51:351–356Google Scholar
  54. 54.
    Bonnett R (1995) porphyrin and phthalocyanine photosensitizers for photodynamic therapy. Chem Soc Rev 24:19–33Google Scholar
  55. 55.
    Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527PubMedGoogle Scholar
  56. 56.
    Parrish JA, Anderson RR, Harrist T, Paul B, Murphy GF (1983) Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol 80:75s–80sPubMedGoogle Scholar
  57. 57.
    Welch AJ (1984) The thermal response of laser-irradiated tissue. IEEE J Quantum Electron 12:1471–1475Google Scholar
  58. 58.
    Jori G, Spikes JD (1990) Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B Biol 6:93–101Google Scholar
  59. 59.
    Soncin M, Busetti A, Fusi F, Jori G, Rodgers MAJ (1999) Irradiation of amelanotic melanoma cells with 532 nm high peak power pulsed laser radiation in the presence of the photothermal sensitiser Cu [II]-haematoporphyrin: a new approach to cell photoinactivation. Photochem Photobiol 69:708–712PubMedCrossRefGoogle Scholar
  60. 60.
    Camerin M, Rello S, Villanueva A, Ping X, Kenney ME, Rodgers MAJ, Jori G (2005) Photothermal sensitisation as a novel therapeutic approach for tumours: studies at the cellular and animal level. Eur J Cancer 41:1203–1212PubMedGoogle Scholar
  61. 61.
    Camerin M, Rodgers MAJ, Kenney ME, Jori G (2005) Photothermal sensitisation: evidence for the lack of oxygen effect on the photosensitizing activity. Photochem Photobiol Sci 4:251–253PubMedGoogle Scholar
  62. 62.
    Welch AJ (1984) The thermal response of laser irradiated tissue. IEEE J Quantum Electron 20:1471–1481Google Scholar
  63. 63.
    Jacques SL, Prahl SA (1987) Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med 6:494–503PubMedGoogle Scholar
  64. 64.
    Sturersson C, Andersson-Engels S (1995) A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Phys Med Biol 40:2037–2052Google Scholar
  65. 65.
    He X, Bischof JC (2003) Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng 31:355–422PubMedGoogle Scholar
  66. 66.
    Anderson RR, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1:263–276PubMedGoogle Scholar
  67. 67.
    Greenwald J, Rosen S, Anderson, RR, Harrist T, MacFarland F, Noe J, Parrish JA (1981) Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol 77:305–310PubMedGoogle Scholar
  68. 68.
    Anderson RR, Parrish JA (1983) Selective photothermolysis: precise micro-surgery by selective absorption of pulsed radiation. Science 200:524–527Google Scholar
  69. 69.
    Morelli JG, Tan OT, Garden J, Margolis R, Seki Y, Bol J, Carney JM, Anderson ŔR, Furumoto H, Parrish JA (1986) Tunable dye laser (577 nm) treatment of port wine stains. Lasers Surg Med 6:94–99PubMedGoogle Scholar
  70. 70.
    Polla LL, Margolis RJ, Dover JS, Whitaker D, Murphy GF, Jacques SL, Anderson RR (1987) Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin. J Invest Dermatol 89:281–286PubMedGoogle Scholar
  71. 71.
    Ara G, Anderson R, Mandel K, Oseroff AR (1988) Absorption of ns photoradiation of melanosomes generates acoustic waves and induces pigmented melanoma cell toxicity. Photochem Photobiol 47:37S–40SGoogle Scholar
  72. 72.
    Chen WR, Adams RL, Heaton E, Dickey DT, Bartels KE, Nordquist RE (1995) Chromophore-enhanced laser tumor tissue photothermal interaction using an 808 nm diode laser. Cancer Lett 88:15–19PubMedGoogle Scholar
  73. 73.
    Chen WR, Adams RL, Bartels KE, Nordquist RE (1995) Chromophore-enhanced in vivo tumor cell destruction using an SOS-nm diode laser. Cancer Lett 94:125–131PubMedGoogle Scholar
  74. 74.
    Jori G, Schindl L, Schindl A, Polo L (1996) Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized processes in vivo. J Photochem Photobiol A Chem 102:101–107Google Scholar
  75. 75.
    Jori G, Spikes JD (1990) Photothermal sensitizers: possible use in tumour therapy. J Photochem Photobiol B Biol 6:93–101Google Scholar
  76. 76.
    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedGoogle Scholar
  77. 77.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed Engl 40:4128–4158Google Scholar
  78. 78.
    Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedGoogle Scholar
  79. 79.
    West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292PubMedGoogle Scholar
  80. 80.
    Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348Google Scholar
  81. 81.
    Warren CWC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46Google Scholar
  82. 82.
    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27Google Scholar
  83. 83.
    Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108Google Scholar
  84. 84.
    Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedCrossRefGoogle Scholar
  85. 85.
    Zharov VP, Galitovsky V, Viegas M (2003) Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 83(24):4897–4899Google Scholar
  86. 86.
    Zharov VP, Galitovskaya E, Viegas M (2004) Photothermal guidance for selective photothermolysis with nanoparticles. Proc SPIE 5319:291–300Google Scholar
  87. 87.
    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315PubMedGoogle Scholar
  88. 88.
    Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226PubMedGoogle Scholar
  89. 89.
    El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135PubMedGoogle Scholar
  90. 90.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells using immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417PubMedGoogle Scholar
  91. 91.
    Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179Google Scholar
  92. 92.
    Huang X, El-Sayed IH, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120PubMedGoogle Scholar
  93. 93.
    Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 35(5):500–501Google Scholar
  94. 94.
    Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435Google Scholar
  95. 95.
    Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132PubMedGoogle Scholar
  96. 96.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near infrared thermal therapy of tumors under MR Guidance. Proc Natl Acad Sci 100:13549–13554PubMedGoogle Scholar
  97. 97.
    Loo CH, Lin A, Hirsch LR, Lee MH, Barton J, Halas NJ, West J, Drezek RA (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech Cancer Res Treat 3:33–40Google Scholar
  98. 98.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared absorbing nanoshells. Cancer Lett 209:171–176PubMedGoogle Scholar
  99. 99.
    Loo C, Lowery A, Halas NJ, West JL, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711PubMedGoogle Scholar
  100. 100.
    Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xie Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261Google Scholar
  101. 101.
    Hu M, Petrova H, Chen J, McLellan JM, Siekkinen AR, Marquez M, Li X, Xia Y, Hartland GV (2006) Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 110(4):1520–1524PubMedGoogle Scholar
  102. 102.
    Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605Google Scholar
  103. 103.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans 147:145–181Google Scholar
  104. 104.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:551951Google Scholar
  105. 105.
    Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New YorkGoogle Scholar
  106. 106.
    Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271Google Scholar
  107. 107.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  108. 108.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Heidelberg New YorkGoogle Scholar
  109. 109.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426Google Scholar
  110. 110.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217Google Scholar
  111. 111.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453Google Scholar
  112. 112.
    S Link, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366Google Scholar
  113. 113.
    Mie G (1908) Contribution to the optics of turbid media, especially colloidal metal suspensions. Ann Phys 25:377–445Google Scholar
  114. 114.
    Gans R (1915) Form of ultramicroscopic particles of silver. Ann Phys 47:270–284Google Scholar
  115. 115.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077Google Scholar
  116. 116.
    Link S, El-Sayed MA (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109:10531–10532 (erratum)Google Scholar
  117. 117.
    Murphy CJ, Sau TK, Gole A, Orendorff CJ, Gao J, Gou L, Hunyadi S, Li T (2005) Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMedGoogle Scholar
  118. 118.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962Google Scholar
  119. 119.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247Google Scholar
  120. 120.
    Prodan EM, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422PubMedGoogle Scholar
  121. 121.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248PubMedGoogle Scholar
  122. 122.
    Du H, Fuh RA, Li J, Corkan A, Lindsey JS (1998) PhotochemCAD††: a computer-aided design and research tool in photochemistry. Photochem Photobiol 68:141–142Google Scholar
  123. 123.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317PubMedGoogle Scholar
  124. 124.
    Lin CP, Kelly MW (1998) Cavitation and acoustic emission around laser-heated microparticles. Appl Phys Lett 72:2800–2802Google Scholar
  125. 125.
    Lin CP, Kelly MW, Sibayan SAB, Latina MA, Anderson RR (1999) Selective cell killing by microparticle absorption of pulsed laser radiation. IEEE J Quantum Electron 5:963–968Google Scholar
  126. 126.
    Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641Google Scholar
  127. 127.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347PubMedGoogle Scholar
  128. 128.
    Maeda H (2001) The enhanced permeability and Retention (EPR) effect in tumor Vasculature: the key role of Tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207PubMedGoogle Scholar
  129. 129.
    Maedaa H, Fanga J, Inutsukaa T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328Google Scholar
  130. 130.
    Fang J, Sawa T, Maeda H (2003) Factors and mechanism of “EPR”effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 519:29–49PubMedCrossRefGoogle Scholar
  131. 131.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183PubMedGoogle Scholar
  132. 132.
    Greish K, Sawa T, Fang J, Akaike T, Maeda H (2004) SMAdoxorubicin, a new polymeric micellar drug for effective targeting to solid tumors. J Control Release 97:219–230PubMedGoogle Scholar
  133. 133.
    McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594PubMedGoogle Scholar
  134. 134.
    Kommareddy S, Amiji M (2007) Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci 96(2):397–407PubMedGoogle Scholar
  135. 135.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotech 24(2):62–67Google Scholar
  136. 136.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti–epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004PubMedGoogle Scholar
  137. 137.
    Sokolov K, Aaron J, Hsu B, Nida D, Gillanwater A, Follen M, Macaulay C, Adler-Storthz K, Korgel B, Discour M, Pasqualini R, Arap W, Lam W, Richartz-Kortum R (2003) Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat 2(6):491–504PubMedGoogle Scholar
  138. 138.
    Hayat MA (1989) Colloidal gold: principles, methods and applications, vol 1 edn. Academic, San DiegoGoogle Scholar
  139. 139.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834PubMedGoogle Scholar
  140. 140.
    Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374Google Scholar
  141. 141.
    Ai H, Fang M, Jones SA, Lvov YM (2002) Electrostatic layer-by-layer nanoassembly on biological microtemplates: platelets. Biomacromolecules 3:560–564PubMedGoogle Scholar
  142. 142.
    Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13:3427–3433Google Scholar
  143. 143.
    Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641Google Scholar
  144. 144.
    Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51PubMedGoogle Scholar
  145. 145.
    Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259PubMedGoogle Scholar
  146. 146.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon, KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Xiaohua Huang
    • 1
  • Prashant K. Jain
    • 1
  • Ivan H. El-Sayed
    • 2
  • Mostafa A. El-Sayed
    • 1
    • 3
  1. 1.Laser Dynamics Laboratory, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Otolaryngology—Head and Neck Surgery, Comprehensive Cancer CenterUniversity of California at San FranciscoSan FranciscoUSA
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations