Skip to main content

Er:YAG laser therapy for peri-implant infection: a histological study

Abstract

The purpose of this study was to evaluate the effects of Er:YAG laser on degranulation and implant surface debridement in peri-implant infection. The peri-implant infection was experimentally induced in dogs, and the treatment was performed using an Er:YAG laser or a plastic curet. Animals were sacrificed after 24 weeks, and undecalcified histological sections were prepared and analyzed. Degranulation and implant surface debridement were obtained effectively and safely by Er:YAG laser. Histologically, a favorable formation of new bone was observed on the laser-treated implant surface, and the laser group showed a tendency to produce greater bone-to-implant contact than the curet group. These results indicate that the Er:YAG laser therapy has promise in the treatment of peri-implantitis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-m wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

  2. Aoki A, Ando Y, Watanabe H, Ishikawa I (1994) In vitro studies on laser scaling of subgingival calculus with an erbium:YAG laser. J Periodontol 65:1097–1106

    PubMed  CAS  Google Scholar 

  3. Aoki A, Miura M, Akiyama F, Nakagawa N, Tanaka J, Oda S, Watanabe H, Ishikawa I (2000) In vitro evaluation of Er:YAG laser scaling of subgingival calculus in comparison with ultrasonic scaling. J Periodontal Res 35:266–277

    Article  PubMed  CAS  Google Scholar 

  4. Schwarz F, Putz N, Georg T, Reich E (2001) Effect of an Er:YAG laser on periodontally involved root surfaces: an in vivo and in vitro SEM comparison. Lasers Surg Med 29:328–335

    Article  PubMed  CAS  Google Scholar 

  5. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J (2003) In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 32:359–366

    Article  PubMed  Google Scholar 

  6. Mizutani K, Aoki A, Takasaki AA, Kinoshita A, Hayashi C, Oda S, Ishikawa I (2006) Periodontal tissue healing following flap surgery using an Er:YAG laser in dogs. Lasers Surg Med 38:314–324

    Article  PubMed  Google Scholar 

  7. Mombelli A, van Oosten MA, Schurch E, Jr., Land NP (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2:145–151

    PubMed  CAS  Google Scholar 

  8. Listgarten MA, Lai CH (1999) Comparative microbiological characteristics of failing implants and periodontally diseased teeth. J Periodontol 70:431–437

    Article  PubMed  CAS  Google Scholar 

  9. Persson LG, Araujo MG, Berglundh T, Grondahl K, Lindhe J (1999) Resolution of peri-implantitis following treatment. An experimental study in the dog. Clin Oral Implants Res 10:195–203

    Article  PubMed  CAS  Google Scholar 

  10. Wetzel AC, Vlassis J, Caffesse RG, Hammerle CH, Lang NP (1999) Attempts to obtain re-osseointegration following experimental peri-implantitis in dogs. Clin Oral Implants Res 10:111–119

    Article  PubMed  CAS  Google Scholar 

  11. Persson LG, Berglundh T, Lindhe J, Sennerby L (2001) Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res 12:595–603

    Article  PubMed  CAS  Google Scholar 

  12. Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16:44–52

    Article  PubMed  Google Scholar 

  13. Schwarz F, Bieling K, Nuesry E, Sculean A, Becker J (2006) Clinical and histological healing pattern of peri-implantitis lesions following non-surgical treatment with an Er:YAG laser. Lasers Surg Med 38:663–671

    Article  PubMed  Google Scholar 

  14. Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J (2006) Influence of different treatment approaches on non-submerged and submerged healing of ligature induced peri-implantitis lesions: an experimental study in dogs. J Clin Periodontol 33:584–595

    Article  PubMed  Google Scholar 

  15. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, d’Hoedt B (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res 16:36–43

    Article  PubMed  Google Scholar 

  16. Stubinger S, Henke J, Donath K, Deppe H (2005) Bone regeneration after peri-implant care with the CO2 laser: a fluorescence microscopy study. Int J Oral Maxillofac Implants 20:203–210

    PubMed  Google Scholar 

  17. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I (2003) Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg 21:7–17

    Article  PubMed  Google Scholar 

  18. Sasaki KM, Aoki A, Masuno H, Ichinose S, Yamada S, Ishikawa I (2002) Compositional analysis of root cementum and dentin after Er:YAG laser irradiation compared with CO2 lased and intact roots using Fourier transformed infrared spectroscopy. J Periodontal Res 37:50–59

    Article  PubMed  CAS  Google Scholar 

  19. Sasaki KM, Aoki A, Ichinose S, Ishikawa I (2002) Morphological analysis of cementum and root dentin after Er:YAG laser irradiation. Lasers Surg Med 31:79–85

    Article  PubMed  Google Scholar 

  20. Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19:190–200

    Article  PubMed  CAS  Google Scholar 

  21. Folwaczny M, Mehl A, Aggstaller H, Hickel R (2002) Antimicrobial effects of 2.94 micron Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 29:73–78

    Article  PubMed  Google Scholar 

  22. Schwarz F, Aoki A, Sculean A, Georg T, Scherbaum W, Becker J (2003) In vivo effects of an Er:YAG laser, an ultrasonic system and scaling and root planing on the biocompatibility of periodontally diseased root surfaces in cultures of human PDL fibroblasts. Lasers Surg Med 33:140–147

    Article  PubMed  Google Scholar 

  23. Yamaguchi H, Kobayashi K, Osada R, Sakuraba E, Nomura T, Arai T, Nakamura J (1997) Effects of irradiation of an erbium:YAG laser on root surfaces. J Periodontol 68:1151–1155

    PubMed  CAS  Google Scholar 

  24. Aoki A, Sasaki KM, Watanabe H, Ishikawa I (2004) Lasers in nonsurgical periodontal therapy. Periodontol 2000 36:59–97

    Article  PubMed  Google Scholar 

  25. Ishikawa I, Aoki A, Takasaki AA (2004) Potential applications of Erbium:YAG laser in periodontics. J Periodontal Res 39:275–285

    Article  PubMed  Google Scholar 

  26. Takasaki AA, Aoki A, Ishikawa I (2006) Erbium:YAG laser in Periodontics. Dent Jpn 42:200–206

    Google Scholar 

  27. Ashimoto A, Chen C, Bakker I, Slots J (1996) Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol 11:266–273

    PubMed  CAS  Google Scholar 

  28. Fox SC, Moriarty JD, Kusy RP (1990) The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 61:485–490

    PubMed  CAS  Google Scholar 

  29. Shibli JA, Martins MC, Nociti FH, Jr., Garcia VG, Marcantonio E, Jr. (2003) Treatment of ligature-induced peri-implantitis by lethal photosensitization and guided bone regeneration: a preliminary histologic study in dogs. J Periodontol 74:338–345

    Article  PubMed  Google Scholar 

  30. Karring ES, Stavropoulos A, Ellegaard B, Karring T (2005) Treatment of peri-implantitis by the Vector system. Clin Oral Implants Res 16:288–293

    Article  PubMed  Google Scholar 

  31. Augthun M, Tinschert J, Huber A (1998) In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 69:857–864

    PubMed  CAS  Google Scholar 

  32. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, Becker J (2005) Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig 9:111–117

    Article  PubMed  Google Scholar 

  33. Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J (2006) Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A 77:437–444

    PubMed  Google Scholar 

  34. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T (1988) Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 3:21–24

    PubMed  CAS  Google Scholar 

  35. Roos-Jansaker AM, Renvert S, Egelberg J (2003) Treatment of peri-implant infections: a literature review. J Clin Periodontol 30:467–485

    Article  PubMed  Google Scholar 

  36. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C (1992) Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 3:9–16

    Article  PubMed  CAS  Google Scholar 

  37. Hanisch O, Sorensen RG, Kinoshita A, Spiekermann H, Wozney JM, Wikesjo UM (2003) Effect of recombinant human bone morphogenetic protein-2 in dehiscence defects with non-submerged immediate implants: an experimental study in Cynomolgus monkeys. J Periodontol 74:648–657

    Article  PubMed  CAS  Google Scholar 

  38. Liakoni H, Barber P, Newman HN (1987) Bacterial penetration of pocket soft tissues in chronic adult and juvenile periodontitis cases. An ultrastructural study. J Clin Periodontol 14:22–28

    Article  PubMed  CAS  Google Scholar 

  39. Dongari-Bagtzoglou AI, Warren WD, Berton MT, Ebersole JL (1997) CD40 expression by gingival fibroblasts: correlation of phenotype with function. Int Immunol 9:1233–1241

    Article  PubMed  CAS  Google Scholar 

  40. Williams TM, Cobb CM, Rapley JW, Killoy WJ (1995) Histologic evaluation of alveolar bone following CO2 laser removal of connective tissue from periodontal defects. Int J Periodontics Restor Dent 15:497–506

    CAS  Google Scholar 

  41. Schwarz F, Sculean A, Georg T, Becker J (2003) Clinical evaluation of the Er:YAG laser in combination with an enamel matrix protein derivative for the treatment of intrabony periodontal defects: a pilot study. J Clin Periodontol 30:975–981

    Article  PubMed  Google Scholar 

  42. Sculean A, Schwarz F, Berakdar M, Windisch P, Arweiler NB, Romanos GE (2004) Healing of intrabony defects following surgical treatment with or without an Er:YAG laser. J Clin Periodontol 31:604–608

    Article  PubMed  Google Scholar 

  43. Kreisler M, Gotz H, Duschner H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

    PubMed  Google Scholar 

  44. Kato T, Kusakari H, Hoshino E (1998) Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med 23:299–309

    Article  PubMed  CAS  Google Scholar 

  45. Oyster DK, Parker WB, Gher ME (1995) CO2 lasers and temperature changes of titanium implants. J Periodontol 66:1017–1024

    PubMed  CAS  Google Scholar 

  46. Mouhyi J, Sennerby L, Nammour S, Guillaume P, Van Reck J (1999) Temperature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 10:54–61

    Article  PubMed  CAS  Google Scholar 

  47. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792

    Article  PubMed  Google Scholar 

  48. Nelson JS, Yow L, Liaw LH, Macleay L, Zavar RB, Orenstein A, Wright WH, Andrews JJ, Berns MW (1988) Ablation of bone and methacrylate by a prototype mid-infrared erbium:YAG laser. Lasers Surg Med 8:494–500

    Article  PubMed  CAS  Google Scholar 

  49. Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J, Ando Y, Yamamoto H (1998) Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. J Dent Res 77:1404–1414

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki KM, Aoki A, Ichinose S, Ishikawa I (2002) Ultrastructural analysis of bone tissue irradiated by Er:YAG Laser. Lasers Surg Med 31:322–332

    Article  PubMed  Google Scholar 

  51. Sasaki KM, Aoki A, Ichinose S, Yoshino T, Yamada S, Ishikawa I (2002) Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers. J Periodontol 73:643–652

    Article  PubMed  Google Scholar 

  52. Dortbudak O, Haas R, Mallath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res 11:540–545

    Article  PubMed  CAS  Google Scholar 

  53. Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M, Nishisaka T (2003) High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab 21:67–73

    Article  PubMed  Google Scholar 

  54. Botticelli D, Berglundh T, Persson LG, Lindhe J (2005) Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. J Clin Periodontol 32:448–455

    Article  PubMed  Google Scholar 

  55. Friedmann A, Antic L, Bernimoulin JP, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er:YAG laser. J Biomed Mater Res A 79:53–60

    PubMed  Google Scholar 

  56. Alberius P, Gordh M, Lindberg L, Johnell O (1996) Effect of cortical perforations of both graft and host bed on onlay incorporation to the rat skull. Eur J Oral Sci 104:554–561

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the grant for 21st Century Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone in Tokyo Medical and Dental University and by a Grant-in-Aid for Scientific Research(c)(2) (No. 16592064) (A.A.), Ministry of Education, Culture, Sports, Science and Technology of Japan. The laser apparatus was provided by the HOYA Conbio Corp. (Fremont, CA, USA). Authors wish to thank Drs. Atsuhiro Kinoshita, Tatsuya Akizuki, Chie Hayashi, Kosuke Tanaka, Ikufumi Sato, and Hiroaki Maruyama for their kind technical advice and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aristeo Atsushi Takasaki or Akira Aoki.

Additional information

Contract grant sponsor: 21st Century Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone in Tokyo Medical and Dental University and a Grant-in-Aid for Scientific Research(c)(2) (No. 16592064) (A.A.), Ministry of Education, Culture, Sports, Science and Technology of Japan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takasaki, A.A., Aoki, A., Mizutani, K. et al. Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22, 143–157 (2007). https://doi.org/10.1007/s10103-006-0430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-006-0430-x

Keywords

  • Animals
  • Er:YAG laser
  • Granulation tissue
  • Histometrical analysis
  • Implant debridement
  • Peri-implantitis
  • Surgery