Lasers in Medical Science

, Volume 20, Issue 2, pp 68–73 | Cite as

Laser acupuncture induced specific cerebral cortical and subcortical activations in humans

  • Christian M. Siedentopf
  • Florian Koppelstaetter
  • Ilka  Anna Haala
  • Veronika Haid
  • Paul Rhomberg
  • Anja Ischebeck
  • Waltraud Buchberger
  • Stephan Felber
  • Andreas Schlager
  • Stefan M. Golaszewski
Original Article


As recent studies demonstrated, acupuncture can elicit activity in specific brain areas. This study aims to explore further the central effect using laser acupuncture. We investigated the cerebral effects of laser acupuncture at both acupoints GB43 with functional magnetic resonance imaging (fMRI). As a control condition the laser was mounted at the same acupoints but without application of laser stimulation. The group results showed significant brain activations within the thalamus, nucleus subthalamicus, nucleus ruber, the brainstem, and the Brodmann areas 40 and 22 for the acupuncture condition. No significant brain activations were observed within the placebo condition. The activations we observed were laser acupuncture-specific and predominantly ipsilateral. This supports the assumption that acupuncture is mediated by meridians, since meridians do not cross to the other side. Furthermore, we could show that laser acupuncture allows one to design a pure placebo condition.


Laser acupuncture Acupoint GB43 Xiaxi Functional magnetic resonance imaging (fMRI) 


  1. 1.
    Cho ZH, Chung SC, Jones PJ, Park JB, Park HJ, Lee HJ, Wong EK, Min BI (1998) New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proc Natl Acad Sci USA 95:2670–2673CrossRefPubMedGoogle Scholar
  2. 2.
    Jang MH, Shin MC, Lee TH, Lim BV, Shin MS, Min BI, Kim H, Cho S, Kim EH, Kim CJ (2003) Acupuncture suppresses ischemia-induced increase in c-Fos expression and apoptosis in the hippocampal CA1 region in gerbils. Neurosci Lett 347(1):5–8CrossRefPubMedGoogle Scholar
  3. 3.
    Sato A, Sato Y, Suzuki A, Uchida S (1993) Neural mechanisms of the reflex inhibition and excitation of gastric motility elicited by acupuncture-like stimulation in anesthetized rats. Neurosci Res18(1):53–62CrossRefPubMedGoogle Scholar
  4. 4.
    Uchida S, Kagitani F, Suzuki A, Aikawa Y (2000) Effect of acupuncture-like stimulation on cortical cerebral blood flow in anesthetized rats. Jpn J Physiol 50(5):495–507CrossRefPubMedGoogle Scholar
  5. 5.
    Ulett GA, Han S, Han JS (1998) Electroacupuncture: mechanisms and clinical application. Biol Psychiatr 44(2):129–138CrossRefGoogle Scholar
  6. 6.
    Mayer DJ (2000) Acupuncture: an evidence-based review of the clinical literature. Annu Rev Med 51:49–63CrossRefPubMedGoogle Scholar
  7. 7.
    NIH (1998) Consensus Conference. Acupuncture. J Am Med Assoc 17:1518–1524Google Scholar
  8. 8.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(2):5675–5679PubMedGoogle Scholar
  9. 9.
    Li G, Cheung RT, Ma QY, Yang ES (2003) Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints. Neuroreport 14(5):669–673CrossRefPubMedGoogle Scholar
  10. 10.
    Litscher G, Rachbauer D, Ropele S, Wang L, Schikora D, Fazekas F, Ebner F (2004) Acupuncture using laser needles modulates brain function: first evidence from functional transcranial Doppler sonography and functional magnetic resonance imaging. Lasers Med Sci 19(1):6–11CrossRefPubMedGoogle Scholar
  11. 11.
    Siedentopf CM, Golaszewski SM, Mottaghy FM, Ruff CC, Felber S, Schlager A (2002) Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neurosci Lett 327(1):53–56CrossRefPubMedGoogle Scholar
  12. 12.
    Biella G, Sotgiu ML, Pellegata G, Paulesu E, Castiglioni I, Fazio F (2001) Acupuncture produces central activations in pain regions. Neuroimage 14(1 Pt 1):60–66CrossRefPubMedGoogle Scholar
  13. 13.
    Hsieh JC, Tu CH, Chen FP, Chen MC, Yeh TC, Cheng HC, Wu YT, Liu RS, Ho LT (2001) Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett 307(2):105–108CrossRefPubMedGoogle Scholar
  14. 14.
    Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, Kennedy DN, Rosen BR, Kwong KK (2000) Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp 9:13–25CrossRefPubMedGoogle Scholar
  15. 15.
    Wu MT, Hsieh JC, Xiong J, Yang CF, Pan HB, Chen YC, Tsai G, Rosen BR, Kwong KK (1999) Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain-preliminary experience. Radiology 212:133–141PubMedGoogle Scholar
  16. 16.
    Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, Chen CJ, Liao JR, Lai PH, Chu KA, Pan HB, Yang CF (2002) Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 16(4):1028–1037CrossRefPubMedGoogle Scholar
  17. 17.
    Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK (2004) Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 24(3):193–205CrossRefGoogle Scholar
  18. 18.
    Whittaker P (2004) Laser acupuncture: past, present, and future. Lasers Med Sci 19:69–80CrossRefPubMedGoogle Scholar
  19. 19.
    Cho ZH, Wang EK, Lee SH, Hong IK (2001) Functional magnetic resonance imaging of the brain in the investigation of acupuncture. In: Stux G, Hammerschlag R (eds) Clinical acupuncture. Springer, Berlin Heidelberg New York, pp 83–95Google Scholar
  20. 20.
    Becker R, Reichmanis M (1976) Electrophysiological correlates of acupuncture points and meridians. Psychoenerg Syst 1:195–212Google Scholar
  21. 21.
    Chan SHH et al. (1984) What is being stimulated in acupuncture: evaluation of existence of a specific substrate. Neurosci Biobehav Rev 8:25–33CrossRefPubMedGoogle Scholar
  22. 22.
    Kwong KK (1995) Functional magnetic resonance imaging with echo planar imaging. Magn Reson Q 11:1–20PubMedGoogle Scholar
  23. 23.
    Ogawa S, Lee TM, Kay AR (1990) Brain magnetic resonance imaging with contrast dependant on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedGoogle Scholar
  24. 24.
    Ogawa S, Tank DW, Menon R (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955PubMedGoogle Scholar
  25. 25.
    The Wellcome Department of Cognitive Neurology,University College London, UK:
  26. 26.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, StuttgartGoogle Scholar
  27. 27.
    Li G, Liu HL, Cheung RT, Hung YC, Wong KK, Shen GG, Ma QY, Yang ES (2003) An fMRI study comparing brain activation between word generation and electrical stimulation of language-implicated acupoints. Hum Brain Mapp 18(3):233–238CrossRefPubMedGoogle Scholar
  28. 28.
    Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220CrossRefGoogle Scholar
  29. 29.
    Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1995) Detecting Activations in PET and fMRI: levels of inference and power. Neuroimage 1:223–235Google Scholar
  30. 30.
    Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131CrossRefPubMedGoogle Scholar
  31. 31.
    Cho ZH, Hong IK, Kang CK, Kim JS, Na CS, Park KJ, Jeong KW, Wong EK (2000) Acupuncture-stimulated auditory-cortical activation observed by fMRI: a case of acupoint SJ5 stimulation. Proc Int Soc Mag Reson Med 8:327Google Scholar
  32. 32.
    Kellner G (1966) On a vascularized nerve-ending corpuscle of the Krause end-organ type. Z Mikrosk Anat Forsch 75:130–144PubMedGoogle Scholar
  33. 33.
    Pomeranz B (1997) Scientific basis of acupuncture. In: Stux G, Pomeranz B (eds) Basics of acupuncture. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Christian M. Siedentopf
    • 1
  • Florian Koppelstaetter
    • 1
  • Ilka  Anna Haala
    • 1
  • Veronika Haid
    • 1
  • Paul Rhomberg
    • 1
  • Anja Ischebeck
    • 2
  • Waltraud Buchberger
    • 3
  • Stephan Felber
    • 1
  • Andreas Schlager
    • 4
  • Stefan M. Golaszewski
    • 1
    • 5
  1. 1.Department of Radiology IIUniversity Hospital of InnsbruckInnsbruckAustria
  2. 2.Department of NeurologyUniversity Hospital of InnsbruckInnsbruckAustria
  3. 3.Institute for Health ScienceUniversity for Health Sciences, Medical Informatics and Technology UMITAustria
  4. 4.Department of Anaesthesiology and Critical Care MedicineUniversity Hospital of InnsbruckInnsbruckAustria
  5. 5.Neurological Therapy Centre, Duesseldorf and St. Mauritius Therapy Hospital, MeerbuschUniversity Hospital of DuesseldorfDuesseldorfGermany

Personalised recommendations