Advertisement

An interactive approach to determine the elements of a pairwise comparison matrix

  • József Temesi
Original Paper

Abstract

The elicitation process, which provides initial data for further analysis in various decision making problems, can influence the final result (preference scores, weights). The elicitation process is crucial for getting consistent, near-consistent or inconsistent PCM. Decision support systems apply different approaches in practice. This paper aims at investigating two questions. Correction methods are interpreted and analyzed from the viewpoints of their philosophy and techniques to decrease the degree of inconsistency. On the other hand improving consistency in real-world decision problems is not possible without additional information from the decision maker. The proposed interactive method can be applied for individual decision making problems with verbal scale. The involvement of the decision maker and a heuristic rule can ensure that the process either provides a near-consistent and error-free PCM or demonstrates the inability of the decision maker to reach that goal.

Keywords

Pairwise comparison matrices Elicitation methods Inconsistency Multi-attribute decision making Decision support 

References

  1. Bana e Costa CA, Vansnick JC (2008) A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur J Oper Res 187:1422–1428CrossRefGoogle Scholar
  2. Belton V, Gear T (1983) On a short-coming of Saaty’s method of analytic hierarchies. Omega 11(3):228–230CrossRefGoogle Scholar
  3. Bozóki S, Rapcsák T (2008) On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J Global Optim 42(2):157–175CrossRefGoogle Scholar
  4. Bozóki S, Fülöp J, Rónyai L (2010) On optimal completion of incomplete pairwise comparison matrices. Math Comput Model 52(1–2):318–333CrossRefGoogle Scholar
  5. Bozóki S, Fülöp J, Poesz A (2011) On pairwise comparison matrices that can be made consistent by the modification of a few elements. CEJOR 19(2):157–175CrossRefGoogle Scholar
  6. Bozóki S, Fülöp J, Poesz A (2015) On reducing inconsistency of pairwise comparison matrices below an acceptance threshold. CEJOR 23(4):849–866CrossRefGoogle Scholar
  7. Brunelli M (2015) Introduction to analytic hierarchy process. Springer, BerlinCrossRefGoogle Scholar
  8. Brunelli M, Fedrizzi M (2015) Axiomatic properties of inconsistency indices for pairwise comparisons. J Oper Res Soc 66(1):1–15CrossRefGoogle Scholar
  9. Cao D, Leung LC, Law JS (2008) Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach. Decis Support Syst 44(4):944–953CrossRefGoogle Scholar
  10. Choo EU, Wedley WC (2004) A common framework for deriving preference values from pairwise comparison matrices. Comput Oper Res 31:893–908CrossRefGoogle Scholar
  11. Condorcet M (1785) Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendues á la Pluralité des Voix, ParisGoogle Scholar
  12. Ergu D, Kou G, Peng Y, Shi Y (2011) A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP. Eur J Oper Res 213(1):246–259CrossRefGoogle Scholar
  13. Gaul W, Gastes D (2012) A note on consistency improvements of AHP paired comparison data. Adv Data Anal Classif 6:289–302CrossRefGoogle Scholar
  14. Gehrlein WV (2006) Condorcet’s paradox. Springer, BerlinGoogle Scholar
  15. González-Pachón J, Romero C (2004) A method for dealing with inconsistencies in pairwise comparisons. Eur J Oper Res 158:351–361CrossRefGoogle Scholar
  16. Harker PT (1987) Incomplete pairwise comparisons in the analytic hierarchy process. Math Model 9(11):837–848CrossRefGoogle Scholar
  17. Ishizaka A, Lustin M (2004) An expert module to improve the consistency of AHP matrices. Int Trans Oper Res 11:97–105CrossRefGoogle Scholar
  18. Karapetrovic S, Rosenbloom ES (1999) A quality control approach to consistency paradoxes in AHP. Eur J Oper Res 119(3):704–718CrossRefGoogle Scholar
  19. Kéri G (2011) On qualitatively consistent, transitive and contradictory judgment matrices emerging from multiattribute decision procedures. CEJOR 19:215–224CrossRefGoogle Scholar
  20. Koczkodaj WW (1993) A new definition of consistency of pairwise comparisons. Math Comput Model 8:79–84CrossRefGoogle Scholar
  21. Kou G, Ergu D, Shang J (2014) Enhancing data consistency in decision matrix: adapting Hadamard model to mitigate judgment contradiction. Eur J Oper Res 236(1):261–271CrossRefGoogle Scholar
  22. Kwiesielewicz M, van Uden E (2004) Inconsistent judgments in pairwise comparison method in the AHP. Comput Oper Res 31:713–719CrossRefGoogle Scholar
  23. Lin C (2007) A revised framework for deriving preference values from pairwise comparison matrices. Eur J Oper Res 176(2):1145–1150CrossRefGoogle Scholar
  24. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97CrossRefGoogle Scholar
  25. Murphy CK (1993) Limits on the analytic hierarchy process from its inconsistency index. Eur J Oper Res 65:138–139CrossRefGoogle Scholar
  26. Saaty T (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281CrossRefGoogle Scholar
  27. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  28. Saaty TL (2003) Decision making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91CrossRefGoogle Scholar
  29. Siraj S, Mikhailov L, Keane J (2012) A heuristic method to rectify intransitive judgments in pairwise comparison matrices. Eur J Oper Res 216:420–428CrossRefGoogle Scholar
  30. Siraj S, Mikhailov L, Keane J (2015) Contribution of individual judgments toward inconsistency in pairwise comparisons. Eur J Oper Res 242:557–567CrossRefGoogle Scholar
  31. Temesi J (2011) Pairwise comparison matrices and the error-free property of the decision maker. CEJOR 19(2):239–249CrossRefGoogle Scholar
  32. Temesi J (2017) (In Hungarian) Determining the elements of a pairwise comparison matrix in case of verbal scale. Szigma 68(3–4):111–131Google Scholar
  33. Xu ZS, Wei CP (1999) A consistency improving method in the analytic hierarchy process. Eur J Oper Res 116(2):443–449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Corvinus University of BudapestBudapestHungary

Personalised recommendations