Skip to main content
Log in

Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers the primal quadratic simplex method for linearly constrained convex quadratic programming problems. Finiteness of the algorithm is proven when \({\mathbf {s}}\)-monotone index selection rules are applied. The proof is rather general: it shows that any index selection rule that only relies on the sign structure of the reduced costs/transformed right hand side vector and for which the traditional primal simplex method is finite, is necessarily finite as well for the primal quadratic simplex method for linearly constrained convex quadratic programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Of course there can be a case that the primal variable in our analysis is \(v_{j^*}\) and it’s complementary pair dual variable is \(u_{j^*}\). However, this situation does not effect the analysis, since it is not important whether the (primal) variable originally was a slack variable or not.

References

  • Akkeles AA, Balogh L, Illés T (2004) New variants of the criss-cross method for linearly constrained, convex quadratic programming. Eur J Oper Res 157(1):74–86

    Article  Google Scholar 

  • Anstreicher KM, Terlaky T (1994) A monotonic build-up simplex algorithm for linear programming. Oper Res 42(3):556–561

    Article  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms. 3rd ed, Wiley-Interscience, Hoboken, NJ

  • Bilen F, Csizmadia Z, Illés T (2007) Anstreicher–Terlaky type monotonic simplex algorithms for linear feasibility problems. Optim Methods Softw 22(4):679–695

    Article  Google Scholar 

  • Bland RG (1977) New finite pivoting rules for the simplex method. Math Oper Res 2:103–107

    Article  Google Scholar 

  • Chvátal V (1983) Linear programming. A series of books in the mathematical sciences. W. H. Freeman and Company, New York

    Google Scholar 

  • Csizmadia, ZS (2007) New pivot based methods in linear optimization, and an application in petroleum industry. PhD Thesis, Eötvös Loránd University of Sciences, Budapest. http://www.cs.elte.hu/csisza

  • Csizmadia Z, Illés T (2006) New criss-cross type algorithms for linear complementarity problems with sufficient matrices. Optim Methods Softw 21(2):247–266

    Article  Google Scholar 

  • Csizmadia Z, Illés T, Nagy A (2012) The s-monotone index selection rules for pivot algorithms of linear programming. Eur J Oper Res 221(3):491–500

    Article  Google Scholar 

  • Csizmadia Z, Illés T, Nagy A (2013) The s-monotone index selection rule for criss-cross algorithms of linear complementarity problems. Acta Univ Sapientiae Inform 5(1):103–139

    Article  Google Scholar 

  • Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

    Book  Google Scholar 

  • de Klerk E, Roos C, Terlaky T (2004) Nemlineáris Optimalizálás. Operációkutatás No. 5., Budapesti Közgazdaságtudományi és Államigazgatási Egyetem, Operációkutatás Tanszék, Budapest

  • den Hertog D, Roos C, Terlaky T (1993) The linear complementarity problem, sufficient matrices and the criss-cross method. Linear Algebra Appl 187:1–14

    Article  Google Scholar 

  • Illés T, Mészáros K (2001) A new and constructive proof of two basic results of linear programming. Yugoslav J Oper Res 11(1):15–30

    Google Scholar 

  • Illés T, Nagy A (2014) Computational aspects of simplex and MBU-simplex algorithms using different anti-cycling pivot rules. Optimization 63(1):49–66

    Article  Google Scholar 

  • Illés T, Terlaky T (2002) Pivot versus interior point methods: pros and cons. Eur J Oper Res 140(2):170–190

    Article  Google Scholar 

  • Klafszky E, Terlaky T (1991) The role of pivoting in proving some fundamental theorems of linear algebra. Linear Algebra Appl 151:97–118

    Article  Google Scholar 

  • Klafszky E, Terlaky T (1992) Some generalizations of the criss-cross method for quadratic programming. Optimization 24(1–2):127–139

    Article  Google Scholar 

  • Lemke CE, Howson JT Jr (1968) On complementary pivot theory. Mathematics of decision sciences. volume Part 1. AMS, Providence, Rhode Island, pp 95–114

  • Murty KG (1976) Linear and combinatorial programming. Wiley, New York

    Google Scholar 

  • Nagy A (2014) On the theory and applications of flexible anti-cycling index selection rules for linear optimization problems. PhD Thesis, Eötvös Loránd University of Sciences, Budapest

  • Terlaky T (1983) Egy új, véges criss-cross módszer lineáris programozási feladatok megoldására. Alkalmazott Matematikai Lapok 10(3–4):289–296

    Google Scholar 

  • Terlaky T (1985) A convergent criss-cross method. Optimization 16(5):683–690

    Article  Google Scholar 

  • Terlaky T, Zhang S (1993) Pivot rules for linear programming: a survey on recent theoretical developments. Ann Oper Res 46/47(1–4):203–233

    Article  Google Scholar 

  • Tucker AW (1963) Principal pivotal transformations of square matrices. SIAM Rev 5:305

    Google Scholar 

  • van de Panne C, Whinston A (1964a) Simplicial methods for quadratic programming. Naval Res Logist 11:273–302

    Article  Google Scholar 

  • van de Panne C, Whinston A (1964b) The simplex and the dual method for quadratic programming. Oper Res Q 15:355–388

    Article  Google Scholar 

  • van de Panne C, Whinston A (1966) A parametric simplicial formulation of Houthakker’s capacity method. Econometrica 34(2):354–380

    Article  Google Scholar 

  • van de Panne C, Whinston A (1969) The symmetric formulation of the simplex method for quadratic programming. Econometrica 37(3):507–527

    Article  Google Scholar 

  • Wolfe P (1959) The simplex method for quadratic programming. Econometrica 27(3):382–398

    Article  Google Scholar 

  • Zhang S (1997) A new variant of criss-cross pivot algorithm for linear programming. Eur J Oper Res 116(3):607–614

    Article  Google Scholar 

  • Zionts S (1969) The criss-cross method for solving linear programming problems. Manage Sci 15(7):426–445

    Article  Google Scholar 

Download references

Acknowledgements

Tibor Illés acknowledges the research support obtained as a part time John Anderson Research Lecturer from the Management Science Department, Strathclyde University, Glasgow, UK. This research has been partially supported by the UK Engineering and Physical Sciences Research Council (Grant No. EP/P005268/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienn Csizmadia.

Additional information

Dedicated to Goran Lešaja in honor of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csizmadia, A., Csizmadia, Z. & Illés, T. Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied. Cent Eur J Oper Res 26, 535–550 (2018). https://doi.org/10.1007/s10100-018-0523-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-018-0523-1

Keywords

Navigation