Abstract
Incorporation of a decision maker’s preferences into multi-objective evolutionary algorithms has become a relevant trend during the last decade, and several preference-based evolutionary algorithms have been proposed in the literature. Our research is focused on improvement of a well-known preference-based evolutionary algorithm R-NSGA-II by incorporating a local search strategy based on a single agent stochastic approach. The proposed memetic algorithm has been experimentally evaluated by solving a set of well-known multi-objective optimization benchmark problems. It has been experimentally shown that incorporation of the local search strategy has a positive impact to the quality of the algorithm in the sense of the precision and distribution evenness of approximation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Auger A, Bader J, Brockhoff D, Zitzler E (2009) Articulating user preferences in many-objective problems by sampling the weighted hypervolume. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, ACM, pp 555–562
Caponio A, Neri F (2009) Integrating cross-dominance adaptation in multi-objective memetic algorithms. Springer, Berlin
Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evolut Comput 7:205–230
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken
Deb K, Kumar A (2007) Light beam search based multi-objective optimization using evolutionary algorithms. In: 2007 IEEE congress on evolutionary computation (CEC), pp 2125–2132
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197
Deb K, Sundar J, Udaya Bhaskara Rao N, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res 2(3):273–286
Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the world on congress on computational intelligence, pp 825–830
Filatovas E, Kurasova O, Sindhya K (2015) Synchronous R-NSGA-II: an extended preference-based evolutionary algorithm for multi-objective optimization. Informatica 26(1):33–50
Goel T, Deb K (2002) Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the fourth Asia-Pacific conference on simulated evolution and learning (SEAL02), pp 188–192
Gong M, Liu F, Zhang W, Jiao L, Zhang Q (2011) Interactive MOEA/D for multi-objective decision making. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, ACM, pp 721–728
Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403
Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evolut Comput 18(4):602–622
Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evolut Comput 8(2):149–172
Lančinskas A, Ortigosa PM, Žilinskas J (2013) Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal Model Control 18(3):293–313
Lančinskas A, Žilinskas J, Ortigosa PM (2011) Local optimization in global multi-objective optimization algorithms. In: 2011 third world congress on nature and biologically inspired computing (NaBIC), pp 323–328
López-Jaimes A, Coello Coello CA (2014) Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems. Inf Sci 277:1–20
Mejía JAH, Schütze O, Deb K (2014) A memetic variant of R-NSGA-II for reference point problems. In: EVOLVE-A bridge between probability, set oriented numerics, and evolutionary computation V, Springer, pp 247–260
Miettinen K (1999) Nonlinear multiobjective optimization. Springer, Berlin
Mohammadpour A, Dehghani A, Byagowi Z (2013) Using R-NSGA-II in the transmission expansion planning problem for a deregulated power system with wind farms. Int J Eng Pract Res 2(4):201–204
Murata T, Nozawa H, Tsujimura Y, Gen M, Ishibuchi H (2002) Effect of local search on the performance of cellular multiobjective genetic algorithms for designing fuzzy rule-based classification systems. In: Proceedings of the world on congress on computational intelligence, vol 1, IEEE, pp 663–668
Purshouse RC, Deb K, Mansor MM, Mostaghim S, Wang R (2014) A review of hybrid evolutionary multiple criteria decision making methods. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1147–1154
Ray T, Asafuddoula M, Isaacs A (2013) A steady state decomposition based quantum genetic algorithm for many objective optimization. In: 2013 IEEE congress on evolutionary computation (CEC), pp 2817–2824
Ruiz AB, Saborido R, Luque M (2015) A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J Glob Optim 62(1):101–129
Siegmund F, Bernedixen J, Pehrsson L, Ng AH, Deb K (2012) Reference point-based evolutionary multi-objective optimization for industrial systems simulation. In: Proceedings of the winter simulation conference
Siegmund F, Ng AH, Deb K (2012) Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
Sindhya K, Miettinen K, Deb K (2013) A hybrid framework for evolutionary multi-objective optimization. IEEE Trans Evolut Comput 17(4):495–511
Sindhya K, Ruiz AB, Miettinen K (2011) A preference based interactive evolutionary algorithm for multi-objective optimization: PIE. In: 6th international conference on evolutionary multi-criterion optimization, EMO 2011, Springer, pp 212–225
Sindhya K, Sinha A, Deb K, Miettinen K (2009) Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems. In: 2009 IEEE congress on evolutionary computation (CEC), IEEE, pp 2919–2926
Solis F, Wets B (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30
Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken
Thiele L, Miettinen K, Korhonen PJ, Molina J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evolut Comput 17(3):411–436
Zavala GR, Nebro AJ, Luna F, Coello CAC (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):537–558
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731
Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49
Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Parallel problem solving from nature-PPSN VIII, Springer, pp 832–842
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Tech rep
Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel problem solving from nature-PPSN V, Springer, pp 292–301
Acknowledgments
This research is funded by a Grant (No. MIP-051/2014) from the Research Council of Lithuania.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Filatovas, E., Lančinskas, A., Kurasova, O. et al. A preference-based multi-objective evolutionary algorithm R-NSGA-II with stochastic local search. Cent Eur J Oper Res 25, 859–878 (2017). https://doi.org/10.1007/s10100-016-0443-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10100-016-0443-x