Skip to main content
Log in

Measuring centrality by a generalization of degree

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

Network analysis has emerged as a key technique in communication studies, economics, geography, history and sociology, among others. A fundamental issue is how to identify key nodes, for which purpose a number of centrality measures have been developed. This paper proposes a new parametric family of centrality measures called generalized degree. It is based on the idea that a relationship to a more interconnected node contributes to centrality in a greater extent than a connection to a less central one. Generalized degree improves on degree by redistributing its sum over the network with the consideration of the global structure. Application of the measure is supported by a set of basic properties. A sufficient condition is given for generalized degree to be rank monotonic, excluding counter-intuitive changes in the centrality ranking after certain modifications of the network. The measure has a graph interpretation and can be calculated iteratively. Generalized degree is recommended to apply besides degree since it preserves most favourable attributes of degree, but better reflects the role of the nodes in the network and has an increased ability to distinguish among their importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Chebotarev and Shamis (1997, p. 1511) note that ‘there exists a certain relation between the problem of centrality evaluation and the problem of estimating the strength of players from incomplete tournaments’. The similarity between the two areas is mentioned by Monsuur and Storcken (2004), too.

  2. Degrees in the component given by the set of nodes \(N^1\) are the same in (NA) and \((N,A^{\prime })\) due to the condition \(a_{ij} = a^{\prime }_{ij}\) for all \(i,j \in N^1\).

  3. There exists a path from node j to node h due to connectedness. Along this path one should find such \(k,m \in N\), for example, \(k = j\) and \(m = h\) if \(a_{jh} = 1\).

  4. \(n \ge 3\) is necessary to get a meaningful start network.

  5. There exists an appropriately small \(\varepsilon \) satisfying the condition of Theorem 1 for any \(\mathsf {d}\) and \(\mathfrak {d}\).

  6. Nevertheless, the lower rank of node 3 may be explained. Landherr et al. (2010) mention cannibalization and saturation effects, which sometimes arise when an actor can devote less time to maintaining existing relationships as a result of adding new contacts. Similarly, the edges can represent not only opportunities, but liabilities, too. For example, a service provider may have legal constraints to serve unprofitable customers. Investigation of these models is leaved for future research.

  7. The proof is available from the author upon request. See also http://www.math.unm.edu/~loring/links/graph_s09/degreeSeq.pdf.

  8. Superscript (k) indicates the centrality vector obtained after the kth iteration step.

  9. In the limit it corresponds to the average degree of neighbours in \(G^{\prime }\) since \(\lim _{\varepsilon \rightarrow \infty } \beta = 1 / {\mathfrak {d}}\).

References

  • Avrachenkov KE, Mazalov VV, Tsynguev BT (2015) Beta current flow centrality for weighted networks. In: Thai MT, Nguyen NP, Shen H (eds) Computational social networks, of lecture notes in computer science, vol 9197. Springer, New York

    Google Scholar 

  • Bavelas A (1948) A mathematical model for group structures. Hum Organ 7(3):16–30

    Article  Google Scholar 

  • Boldi P, Vigna S (2014) Axioms for centrality. Internet Math 10(3–4):222–262

    Article  Google Scholar 

  • Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(1):1170–1182

    Article  Google Scholar 

  • Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484

    Article  Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1):107–117

    Article  Google Scholar 

  • Chebotarev P (1989) Generalization of the row sum method for incomplete paired comparisons. Autom Remote Control 50(8):1103–1113

    Google Scholar 

  • Chebotarev P (1994) Aggregation of preferences by the generalized row sum method. Math Soc Sci 27(3):293–320

    Article  Google Scholar 

  • Chebotarev P (2012) The walk distances in graphs. Discrete Appl Math 160(10):1484–1500

    Article  Google Scholar 

  • Chebotarev P, Shamis E (1997) The matrix-forest theorem and measuring relations in small social groups. Autom Remote Control 58(9):1505–1514

    Google Scholar 

  • Chien S, Dwork C, Kumar R, Simon DR, Sivakumar D (2004) Link evolution: analysis and algorithms. Internet Math 1(3):277–304

    Article  Google Scholar 

  • Csató L (2015) A graph interpretation of the least squares ranking method. Soc Choice Welf 44(1):51–69

    Article  Google Scholar 

  • Dequiedt V, Zenou Y (2015) Local and consistent centrality measures in networks. https://www.gate.cnrs.fr/IMG/pdf/Dequiedt2015.pdf

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41

    Article  Google Scholar 

  • Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Garg M (2009) Axiomatic foundations of centrality in networks. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1372441

  • Geršgorin S (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles 6:749–754

    Google Scholar 

  • González-Díaz J, Hendrickx R, Lohmann E (2014) Paired comparisons analysis: an axiomatic approach to ranking methods. Soc Choice Welf 42(1):139–169

    Article  Google Scholar 

  • Jackson MO (2010) Social and economic networks. Princeton University Press, Princeton

    Google Scholar 

  • Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  Google Scholar 

  • Kitti M (2012) Axioms for centrality scoring with principal eigenvectors. http://www.ace-economics.fi/kuvat/dp79.pdf

  • Klein DJ (2010) Centrality measure in graphs. J Math Chem 47(4):1209–1223

    Article  Google Scholar 

  • Landherr A, Friedl B, Heidemann J (2010) A critical review of centrality measures in social networks. Bus Inf Syst Eng 2(6):371–385

    Article  Google Scholar 

  • Leavitt HJ (1951) Some effects of certain communication patterns on group performance. J Abnorm Soc Psychol 46(1):38

    Article  Google Scholar 

  • Lindelauf RHA, Hamers HJM, Husslage BGM (2013) Cooperative game theoretic centrality analysis of terrorist networks: the cases of Jemaah Islamiyah and Al Qaeda. Eur J Oper Res 229(1):230–238

    Article  Google Scholar 

  • Masuda N, Kawamura Y, Kori H (2009) Analysis of relative influence of nodes in directed networks. Phys Rev E 80(4):046114

    Article  Google Scholar 

  • Masuda N, Kori H (2010) Dynamics-based centrality for directed networks. Phys Rev E 82(5):056107

    Article  Google Scholar 

  • Meyer CD (2000) Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Mohar B (1991) The Laplacian spectrum of graphs. In: Alavi Y, Chartrand G, Oellermann OR, Schwenk AJ (eds) Graph theory, combinatorics, and applications, vol 2. Wiley, New York, pp 871–898

    Google Scholar 

  • Monsuur H, Storcken T (2004) Centers in connected undirected graphs: an axiomatic approach. Oper Res 52(1):54–64

    Article  Google Scholar 

  • Neumann C (1877) Untersuchungen über das logarithmische und Newton’sche Potential. B. G. Teubner, Leipzig

    Google Scholar 

  • Nieminen J (1974) On the centrality in a graph. Scand J Psychol 15(1):332–336

    Article  Google Scholar 

  • Ranjan G, Zhang Z-L (2013) Geometry of complex networks and topological centrality. Phys A Stat Mech Appl 392(17):3833–3845

    Article  Google Scholar 

  • Rubinstein A (1980) Ranking the participants in a tournament. SIAM J Appl Math 38(1):108–111

    Article  Google Scholar 

  • Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603

    Article  Google Scholar 

  • Seeley JR (1949) The net of reciprocal influence: a problem in treating sociometric data. Can J Psychol 3(4):234–240

    Article  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Herbert Hamers for drawing our attention to centrality measures, and to Dezső Bednay, Pavel Chebotarev and Tamás Sebestyén for useful advices. The research was supported by OTKA grant K 111797 and MTA-SYLFF (The Ryoichi Sasakawa Young Leaders Fellowship Fund) Grant ‘Mathematical analysis of centrality measures’, awarded to the author in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Csató.

Appendix

Appendix

Proof of Theorem 1

Let \(x_\ell = x_\ell (\varepsilon )(N,A)\) and \(x_\ell ^{\prime } = x_\ell (\varepsilon )(N,A^{\prime })\) for all \(\ell \in N\). It can be assumed without loss of generality that \(x_i^{\prime }-x_i \ge x_j^{\prime }-x_j\). Let \(s = x_i^{\prime }-x_i\), \(t = x_j^{\prime }-x_j\), \(u = \max \lbrace x_\ell ^{\prime }-x_\ell : \ell \in N {\setminus } \{ i,j \} \rbrace = x_k^{\prime } - x_k\) and \(v = \min \{ x_\ell ^{\prime }-x_\ell : \ell \in N {\setminus } \{ i,j \} = x_m^{\prime } - x_m\). It will be verified that \(t \ge u\).

Assume to the contrary that \(t < u\). The difference of equations from (1) for node k gives:

$$\begin{aligned}&\left( x_k^{\prime } - x_k \right) + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j,k \} } a_{k \ell } \left[ \left( x_k^{\prime } - x_k \right) - \left( x_\ell ^{\prime } - x_\ell \right) \right] \\&\quad + \varepsilon a_{k i} \left[ \left( x_k^{\prime } - x_k \right) - \left( x_i^{\prime } - x_i \right) \right] + \varepsilon a_{k j} \left[ \left( x_k^{\prime } - x_k \right) - \left( x_j^{\prime } - x_j \right) \right] = d_k^{\prime }-d_k = 0. \end{aligned}$$

Since \(u = x_k^{\prime } - x_k \ge x_\ell ^{\prime } - x_\ell \) for all \(\ell \in N {\setminus } \{ i,j \}\) and \(u \ge t\), we get

$$\begin{aligned} u \le \varepsilon a_{k i} (s-u) \Leftrightarrow u \le \frac{\varepsilon a_{k i}}{1+\varepsilon a_{k i}} s. \end{aligned}$$
(2)

Now take the difference of equations from (1) for node i:

$$\begin{aligned} s + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j \} } a_{i \ell } \left[ s - \left( x_\ell ^{\prime } - x_\ell \right) \right] + \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) = d_i^{\prime }-d_i = 1. \end{aligned}$$

Since \(u \ge x_\ell ^{\prime } - x_\ell \) for all \(\ell \in N {\setminus } \{ i,j \}\), we get

$$\begin{aligned} s + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j \} } a_{i \ell } (s-u) + \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) = s + \varepsilon d_i (s-u) + \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) \le 1. \end{aligned}$$

An upper bound for u is known from (2), thus

$$\begin{aligned} 1 + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) \ge s + \varepsilon d_i (s-u) \ge s + \varepsilon d_i \left( 1- \frac{\varepsilon a_{k i}}{1 + \varepsilon a_{k i}} \right) s = \frac{1 + \varepsilon a_{k i} + \varepsilon d_i}{1 + \varepsilon a_{k i}} s. \end{aligned}$$
(3)

By combining (2) and (3):

$$\begin{aligned} u \!\le \!\frac{\varepsilon a_{k i}}{1\!+\!\varepsilon a_{k i}} \frac{1 \!+\! \varepsilon a_{k i}}{1 \!+\! \varepsilon a_{k i} + \varepsilon d_i} \left[ 1 \!+\! \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) \right] \!= \!\frac{\varepsilon a_{k i}}{1 + \varepsilon a_{k i} + \varepsilon d_i} \left[ 1 + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) \right] . \end{aligned}$$
(4)

Take the difference of equations from (1) for node m:

$$\begin{aligned}&\left( x_m^{\prime } - x_m \right) + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j \} } a_{m \ell } \left[ \left( x_m^{\prime } - x_m \right) - \left( x_\ell ^{\prime } - x_\ell \right) \right] \\&\quad + \varepsilon a_{m i} \left[ \left( x_m^{\prime } \!-\! x_m \right) \!-\! \left( x_i^{\prime } \!-\! x_i \right) \right] \!+\! \varepsilon a_{m j} \left[ \left( x_m^{\prime } \!-\! x_m \right) \!-\! \left( x_j^{\prime } - x_j \right) \right] \! =\! d_m^{\prime }-d_m = 0. \end{aligned}$$

Since \(v = x_m^{\prime } - x_m \le x_\ell ^{\prime } - x_\ell \) for all \(\ell \in N {\setminus } \{ i,j \}\) and \(s \ge t\), we get

$$\begin{aligned} v \ge \varepsilon a_{m i} (s-v) + \varepsilon a_{m j} (t-v) \Rightarrow v \ge \frac{\varepsilon \left( a_{m i} + a_{m j} \right) }{1+\varepsilon \left( a_{m i} + a_{m j} \right) } t. \end{aligned}$$
(5)

The difference of equations from (1) for node j results in:

$$\begin{aligned} t + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j \} } a_{j \ell } \left[ t - \left( x_\ell ^{\prime } - x_\ell \right) \right] + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) = d_j^{\prime }-d_j = 1. \end{aligned}$$

Since \(v \le x_\ell ^{\prime } - x_\ell \) for all \(\ell \in N {\setminus } \{ i,j \}\), we get

$$\begin{aligned} t + \varepsilon \sum _{\ell \in N {\setminus } \{ i,j \} } a_{j \ell } (t-v) + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) = t + \varepsilon d_j (t-v) + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) \ge 1. \end{aligned}$$

A lower bound for v is known from (5), thus

$$\begin{aligned} 1 + \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) \le t + \varepsilon d_j \left[ 1- \frac{\varepsilon \left( a_{m i} + a_{m j} \right) }{1 + \varepsilon \left( a_{m i} + a_{m j} \right) } \right] t = \frac{1 + \varepsilon \left( a_{m i} + a_{m j} \right) + \varepsilon d_j}{1 + \varepsilon \left( a_{m i} + a_{m j} \right) } t. \end{aligned}$$
(6)

According to our assumption \(t < u\), therefore from (4) and (6):

$$\begin{aligned} \frac{1 + \varepsilon \left( a_{m i} + a_{m j} \right) }{1 + \varepsilon \left( a_{m i} + a_{m j} \right) + \varepsilon d_j} \left[ 1 + \varepsilon \left( x_i^{\prime } - x_j^{\prime } \right) \right] < \frac{\varepsilon a_{k i}}{1 + \varepsilon a_{k i} + \varepsilon d_i} \left[ 1 + \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) \right] . \end{aligned}$$

Obviously, it does not hold if \(\varepsilon \rightarrow 0\). Now an upper bound is determined for the parameter \(\varepsilon \). After some calculations we get:

$$\begin{aligned} \frac{1 \!+\! \varepsilon \left( a_{m i} \!+\! a_{m j} + d_i \right) \!+\! \varepsilon ^2 \left[ d_i \left( a_{m i} + a_{m j} \right) - a_{k i} d_j \right] }{1 + \varepsilon \left( a_{m i} + a_{m j} + 2 a_{k i} \!+\! d_i \right) \!+\! \varepsilon ^2 \left[ \left( 2 a_{k i} \!+\! d_i \right) \left( a_{m i} \!+ \!a_{m j} \right) + a_{k i} d_j \right] } \!<\! \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) . \end{aligned}$$

Let introduce the notations \(\alpha = \varepsilon \left( a_{m i} + a_{m j} + d_i \right) + \varepsilon ^2 \left[ d_i \left( a_{m i} + a_{m j} \right) - a_{k i} d_j \right] \) and \(y = 1 + 2 \varepsilon a_{ki} + \varepsilon ^2 \left[ 2 a_{k i} \left( a_{m i} + a_{m j} + d_j \right) \right] > 1\). Then the fraction on the left-hand side can be written as \((1 + \alpha ) / (y + \alpha )\). However, \((1 + \alpha ) / (y + \alpha ) > 1 / y\) because \(y + \alpha > 0\) and \(y > 1\), hence

$$\begin{aligned} \frac{1}{1 + 2 \varepsilon a_{k i} + \varepsilon ^2 \left[ 2 a_{k i} \left( a_{m i} + a_{m j} + d_j \right) \right] } < \varepsilon \left( x_j^{\prime } - x_i^{\prime } \right) . \end{aligned}$$

Here \(a_{k i},a_{m i},a_{m j} \le 1\) and \(d_j \le \mathfrak {d}\). As \(x_j^{\prime } - x_i^{\prime } \le x_j - x_i \le \mathfrak {d} - \mathsf {d}\) from boundedness (Proposition 1):

$$\begin{aligned} 1 < (\mathfrak {d} - \mathsf {d}) \left[ (2\mathfrak {d} + 4) \varepsilon ^3 + 2 \varepsilon ^2 + \varepsilon \right] , \end{aligned}$$

which contradicts to the condition of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csató, L. Measuring centrality by a generalization of degree. Cent Eur J Oper Res 25, 771–790 (2017). https://doi.org/10.1007/s10100-016-0439-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-016-0439-6

Keywords

Navigation