Spatial power indices with applications on real voting data from the Chamber of Deputies of the Czech Parliament

Abstract

Participants in parliamentary voting—usually political parties—are evaluated with a value that assigns them predicted power with respect to their strength by so called power indices. However, in real world, political parties’ representatives act not strictly as predicted in theory. One possibility how the representatives differ from theory is the way they form coalitions; the coalitions can be announced (for example official governmental coalition parties in multiparty parliaments) or hidden. To incorporate the coalition forming influence, Bilal et al. (http://aei.pitt.edu/2052/1/001591_1.pdf, 2001) proposed to consider additional weights to possible coalitions into power indices. This article applies the concept of additional weights to calculate an ex post power distribution using Shapley–Shubik power index together with Banzhaf power index on real voting data, namely the data from the Chamber of Deputies of the Czech Parliament with the emphasis on the State Budget voting issues during 2006–2010 parliamentary period.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aleskerov F, Otchour O (2007) Extended Shapley–Owen indices and power distribution in the III state Duma of the Russian Federation. LSE’s CPNSS working papers

  2. Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19:317–343

    Google Scholar 

  3. Barr J, Passarelli F (2009) Who has the power in the EU? Math Soc Sci 57:339–366. doi:10.1016/j.mathsocsci.2008.12.007

    Article  Google Scholar 

  4. Benati S, Marzetti GV (2013) Probabilistic spatial power indices. Soc Choice Welf 40:391–410. doi:10.1007/s00355-011-0608-4

    Article  Google Scholar 

  5. Bilal S, Albuquerque P, Hosli MO (2001) The probability of coalition formation: spatial voting power indices. In: The ECPR general conference/Pan-European IR conference, Canterbury, England, 6–8 September 2001, Madison, Wisconsin. AEI http://aei.pitt.edu/2052/1/001591_1.pdf. Accessed 07 May 2015

  6. Coleman JS (1971) Control of collectives and the power of a collectivity to act. In: Lieberman B (ed) Social choice. Gordon and Breach, New York, pp 192–225

    Google Scholar 

  7. Freixas J, Pons M (2013) Success and decisiveness on proper symmetric games. Cent Eur J Oper Res [online]. doi:10.1007/s10100-013-0332-5

  8. Freixas J, Zwicker WS (2003) Weighted voting, abstention, and multiple levels of approval. Soc Choice Welf 21:399–431. doi:10.1007/s00355-003-0212-3

    Article  Google Scholar 

  9. Gambarelli G, Uristani A (2009) Multicameral voting cohesion games. Cent Eur J Oper Res 17:433–460. doi:10.1007/s10100-009-0102-6

    Article  Google Scholar 

  10. Godfrey J (2005) Computation of the Shapley–Owen power index in two dimensions. In: 4th Annual workshop, University of Warwick 2005 [online]. http://www.lse.ac.uk/CPNSS/research/projectsCurrentlyOnHold/VPP/VPPpdf/VPPpdf_Wshop2005/godfrey.pdf. Accessed 07 May 2015

  11. Haller H (1994) Collusion properties of values. Int J Game Theory 23:261–281. doi:10.1007/BF01247318

    Article  Google Scholar 

  12. Hu X (2006) An asymmetric Shapley–Shubik power index. Int J Game Theory 34:229–240. doi:10.1007/s00182-006-0011-z

    Article  Google Scholar 

  13. López S, Saboya M (2009) On the relationship between Shapley and Owen values. Cent Eur J Oper Res 17:415–423. doi:10.1007/s10100-009-0100-8

    Article  Google Scholar 

  14. Owen G (1977) Values of Games with a priori Unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Fields Institute, Berlin, pp 76–88

    Google Scholar 

  15. Penrose L (1946) The elementary statistics of majority voting. J R Stat Soc 109:53–57. doi:10.2307/2981392

    Article  Google Scholar 

  16. Rae DW (1969) Decision rules and individual values in constitutional choice. Am Polit Sci Rev 63:40–56. doi:10.2307/1954283

    Article  Google Scholar 

  17. Shapley LS (1953) A value for n-Person Games. In: Kuhn H, Tucker AW (eds) Contribution to the theory of games. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  18. Shapley LS, Owen G (1989) Optimal location of candidates in ideological space. Int J Game Theory 18:339–356. doi:10.1007/BF01254297

    Article  Google Scholar 

  19. Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system. Am Polit Sci Rev 48:784–792. doi:10.2307/1951053

    Article  Google Scholar 

  20. Škochová M (2008) Analýza voleb do Poslanecké sněmovny Parlamentu České republiky v roce 2006 [online]. E-polis.cz, 15.srpen 2008. http://www.e-polis.cz/clanek/analyza-voleb-do-poslanecke-snemovny-parlamentu-ceske-republiky-v-roce-2006.html. Accessed 07 May 2015

  21. Valkova H (2013) Poslanci si polepšili o tisíce korun. Z peněz na d\(\mathring{{\rm u}}\)chody a nemocné [online]. http://zpravy.idnes.cz/politici-dostali-vyssi-platy-d21-/domaci.aspx?c=A130307_132321_domaci_hv. Accessed 07 May 2015

  22. Web: Presidential election: volby prezidenta České republiky (1993–2008) [online]. https://cs.wikipedia.org/wiki/Volby_prezidenta_%C4%8Cesk%C3%A9_republiky_%281993-2008%29. Accessed 07 May 2015

  23. Web: Poslanecká sněmovna Parlamentu České republiky [online]. http://www.psp.cz/sqw/hp.sqw. Accessed 07 May 2015

Download references

Acknowledgments

This research was supported by the Grant Agency of the Czech Republic project No. 14-02424S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Mielcová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mielcová, E. Spatial power indices with applications on real voting data from the Chamber of Deputies of the Czech Parliament. Cent Eur J Oper Res 24, 407–420 (2016). https://doi.org/10.1007/s10100-015-0406-7

Download citation

Keywords

  • Shapley–Shubik power index
  • Banzhaf power index
  • Power distribution