Central European Journal of Operations Research

, Volume 23, Issue 4, pp 815–832 | Cite as

Optimal circle covering problems and their applications

  • Balázs Bánhelyi
  • Endre Palatinus
  • Balázs L. Lévai
Original Paper

Abstract

We study a special type of circle covering problem, the complete cover of polygons by not necessarily congruent circles with prescribed centres. We introduce a branch-and-bound algorithm which is able to check whether an actual set of circles covers a given polygon. Furthermore, we present a method capable of finding the optimal cover with arbitrary precision. These techniques are based on interval arithmetic, therefore our results are numerically reliable. To demonstrate the performance of the developed optimization method, we determine the optimal cover of the unit square and an irregular polygon.

Keywords

Interval arithmetics Circle covering Global optimization 

References

  1. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press Inc., New YorkMATHGoogle Scholar
  2. Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121:421–464MATHMathSciNetCrossRefADSGoogle Scholar
  3. Antal E, Csendes T, Virágh J (2013) Nonlinear transformations for the simplification of unconstrained nonlinear optimization problems. Cent Eur J Oper Res 21:665–684CrossRefGoogle Scholar
  4. Bánhelyi B, Csendes T, Garay BM, Hatvani L (2008) A computer-assisted proof of \(\Sigma _{3}\)-chaos in the forced damped pendulum equation. SIAM J Appl Dyn Syst 7(3):843–867MATHMathSciNetCrossRefGoogle Scholar
  5. Cambini R, Sodini C (2008) A computational comparison of some branch and bound methods for indefinite quadratic programs. Cent Eur J Oper Res 16:139–152MATHMathSciNetCrossRefGoogle Scholar
  6. Casado LG, García I, Csendes T (2000) A new multisection technique in interval methods for global optimization. Computing 65:263–269MATHMathSciNetCrossRefGoogle Scholar
  7. Casado LG, García I, Tóth BG, Hendrix EMT (2011) On determining the cover of a simplex by spheres centered at its vertices. J Global Optim 50:645–655MATHMathSciNetCrossRefGoogle Scholar
  8. Csendes T (2001) New subinterval selection criteria for interval global optimization. J Global Optim 19:307–327Google Scholar
  9. Csendes T, Garay BM, Bánhelyi B (2006) A verified optimization technique to locate chaotic regions of a Hénon system. J Global Optim 35:145–160MATHMathSciNetCrossRefGoogle Scholar
  10. C-XSC Language home page. http://www.xsc.de/
  11. Das GK, Das S, Nandy SC, Shina BS (2006) Efficient algorithm for placing a given number of base station to cover a convex region. J Parallel Distrib Comput 66:1353–1358MATHCrossRefGoogle Scholar
  12. Friedman E (2014) Circles covering squares web page. http://www2.stetson.edu/~efriedma/circovsqu/
  13. Heppes A (2006) Covering a planar domain with sets of small diameter. Periodica Mathematica Hungarica 53:157–168MATHMathSciNetCrossRefGoogle Scholar
  14. Heppes A, Melissen H (1997) Covering a rectangle with equal circles. Periodica Mathematica Hungarica 34:65–81MATHMathSciNetCrossRefGoogle Scholar
  15. Huang WQ, Ye T (2011) Quasi-physical global optimization method for solving the equal circle packing problem. Sci China Inf Sci 54:1333–1339MATHMathSciNetCrossRefGoogle Scholar
  16. Kubach T, Bortfeldt A, Gehring H (2009) Parallel greedy algorithms for packing unequal circles into a strip or a rectangle. Cent Eur J Oper Res 17:461–477MATHMathSciNetCrossRefGoogle Scholar
  17. Nurmela KJ (2000) Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles. Exp Math 9:241–250MATHMathSciNetCrossRefGoogle Scholar
  18. Pál L, Csendes T (2009) Intlab implementation of an interval global optimization algorithm. Optim Methods Softw 24:749–759MATHMathSciNetCrossRefGoogle Scholar
  19. Palatinus E (2010) Optimal and reliable covering of planar objects with circles. In: Proceedings of the 2010 mini-conference on applied theoretical computer scienceGoogle Scholar
  20. Ratschek H, Rokne J (1988) New computer methods for global optimization. Ellis Horwood, ChichesterMATHGoogle Scholar
  21. Shimrat M (1962) Algorithm 112, position of point relative to polygon. Commun ACM 5(8):434CrossRefGoogle Scholar
  22. Vinkó T, Ratz D (2004) A multidimensional branch-and-prune method for interval global optimization. Numer Algorithms 37:391–399MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Balázs Bánhelyi
    • 1
  • Endre Palatinus
    • 2
  • Balázs L. Lévai
    • 1
  1. 1.Institute of InformaticsUniversity of SzegedSzegedHungary
  2. 2.Information Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations