Skip to main content

How to derive priorities in AHP: a comparative study

Abstract

A heated discussion has arisen over the “best” priorities derivation method. Using a Monte Carlo simulation this article compares and evaluates the solutions of four AHP ratio scaling methods: the right eigenvalue method, the left eigenvalue method, the geometric mean and the mean of normalized values. Matrices with different dimensions and degree of impurities are randomly constructed. We observe a high level of agreement between the different scaling techniques. The number of ranking contradictions increases with the dimension of the matrix and the inconsistencies. However, these contradictions affect only close priorities.

This is a preview of subscription content, access via your institution.

References

  • Bana e Costa CA, Vansnick J-C (2001) A fundamental criticism to Saaty’s use of the eigenvalue procedure to derive priorities. Working Paper LSEOR 01.42. Retrieved December 2006 from http://www.lse.ac.uk/collections/operationalResearch/research/workingPapers.htm

  • Barzilai J (1997) Deriving weights from pairwise comparison matrices. J Operat Res Soc (JORS) 48(12):1226–32

    Article  Google Scholar 

  • Barzilai J (1998) On the decomposition of the value function. Operat Res Lett 22(4–5):159–170

    Article  Google Scholar 

  • Barzilai J (2001a) Notes on the analytic hierarchy process. In: Proceedings of the NSF Design and Manufacturing Research Conference, pp 1–6

  • Barzilai J (2001b) Basic principles of measurement. In: Proceedings of the IEEE inter-national conference on syst man cybern pp 395–400

  • Barzilai J (2002) Notes on measurement and decision theory. In: Proceedings of the NSF design and manufacturing research conference, pp 1–11

  • Barzilai J, Golany B (1990) Deriving weights from pairwise comparison matrices: the additive case. Operat Rese Lett 9:407–10

    Article  Google Scholar 

  • Barzilai J, Cook WD, Golany B (1987) Consistent weights for judgements matrices of the relative importance of alternatives. Operat Res Lett 6(1):131–134

    Article  Google Scholar 

  • Berekoven L, Eckert W, Ellenrieder P (2001) Marktforschung. Methodische Grundlagen und praktische Anwendung, 9. Auflage, Gabler Verlag, Wiesbaden

  • Blankmeyer E (1987) Approaches to consistency adjustments. J Optim Theory Appl 45:479–488

    Article  Google Scholar 

  • Brugha C (2000) Relative measurement and the power function. Eur J Operat Res 121(3):627–640

    Article  Google Scholar 

  • Budescu DV, Zwick R, Rapoport A (1986) A comparison of the eigenvalue method and the geometric mean procedure for ratio scaling. Appl Psychol Meas 10(1):69–78

    Google Scholar 

  • Chu ATW, Kalabra RE, Spingarn KA (1979) A comparison of two methods for determining the weights of belonging to fuzzy sets. J Optim Theory Appl 27:531–538

    Article  Google Scholar 

  • Cogger KO, Yu PL (1985) Eigenweight vectors and least distance approximation for revealed preference in pairwise weight ratios. J Optim Theory Appl 46:483–491

    Article  Google Scholar 

  • Cook WD, Kress M (1988) Deriving weights from pairwise comparison ratio matrices: an axiomatic approach. Eur J Operat Res 37:355–62

    Article  Google Scholar 

  • Crawford G, Williams C (1985) A note on the analysis of subjective judgement matrices. J Math Psychol 29:387–405

    Article  Google Scholar 

  • Golany B, Kress M (1993) A multicriteria evaluation of the methods for obtaining weights from ratio-scale matrices. Eur J Operat Res 69:210–202

    Article  Google Scholar 

  • Golden BL, Wasil EA, Harker PT (1989) The analytic hierarchy process: applications and studies. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ishizaka A (2004) The advantages of clusters in AHP. In: The 15th Mini-Euro conference, MUDSM

  • Ishizaka A, Lusti M (2003) An intelligent tutorial system for AHP. In: The šorić K, Hunjak T, Scitovski R (eds) Proceedings of the 9th international conference on operational research KOI 2002, pp 215–223

  • Ishizaka A, Lusti M (2004) An expert module to improve the consistency of AHP matrices. Int Trans Operat Res 11(1):97–105

    Article  Google Scholar 

  • Jensen RE (1984) An alternative scaling method for priorities in hierarchical structures. J Math Psychol 28(3):317–332

    Article  Google Scholar 

  • Johnson CR, Beine WB, Wang TY (1979) Right-left asymmetry in an eigenvector ranking procedure. J Math Psychol 18:61–64

    Article  Google Scholar 

  • Harker PT, Vargas L (1987) The theory of ratio scale estimation: saaty’s analytic hierarchy process. Manage Sci 33(11):1383–1403

    Google Scholar 

  • Lusti M (2002) Data warehousing und data mining, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Saaty ThL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saaty ThL (1980) The analytic hierarchy process. Mac Gray-Hill, New York

    Google Scholar 

  • Saaty ThL (2001a) Decision-making with the AHP: why is the Principal Eigenvector necessary? In: Proceedings of the 6th international symposium on the analytic hierarchy process (ISAHP 2001), pp 383–396

  • Saaty ThL (2001b) The seven pillars of the analytic hierarchy process. In: Köksalan M et al. (eds) Multiple criteria decision making in the new millennium. In: Proceedings of the 15th conference, MCDM. Lect. Notes Econ. Math. Syst. vol 507, Springer, Berlin Heidelberg New York, pp 15–37

  • Saaty ThL (2003) Decision-making with the AHP: why is the principal eigenvector necessary?. Eur J Operat Res 145:85–91

    Article  Google Scholar 

  • Saaty ThL, Vargas LG (1984a) Inconsistency and rank preservation. J Math Psychol 28:205–214

    Article  Google Scholar 

  • Saaty Th.L., Vargas L.G. (1984b) Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math Model 5:309–324

    Article  Google Scholar 

  • Salo AA, Hämäläinen RP (1997), On the Measurement of Preferences in the Analytic Hierarchy Process, J Multi-Criteria Decis Anal 6:309–319

    Article  Google Scholar 

  • Shim JP (1989) Bibliography research on the analytic hierarchy process (AHP). Socio-Econ Plan Sci 23:161–167

    Article  Google Scholar 

  • Takeda E, Cooger KO, Yu PL (1987) Estimating criterion weights using eigenvectors: a comparative study. Eur J Operat Res 29:360–369

    Article  Google Scholar 

  • Triantaphyllou E, Pardalos PM, Mann SH (1990) A minimization approach to membership evaluation in fuzzy sets and error analysis. J Optim Theory Appl 66(2):275–287

    Article  Google Scholar 

  • Vargas LG (1990) An overview of the analytic hierarchy process and its applications. Eur J Operat Res 48(1):2–8

    Article  Google Scholar 

  • Zahedi F (1986) The analytic hierarchy process: a survey of the method and its applications. Interface 16:96–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Ishizaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ishizaka, A., Lusti, M. How to derive priorities in AHP: a comparative study. cent.eur.j.oper.res. 14, 387–400 (2006). https://doi.org/10.1007/s10100-006-0012-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-006-0012-9

Keywords

  • Multi-criteria decision making
  • Simulation
  • AHP
  • Eigenvalue
  • Geometric mean