Skip to main content

Advertisement

Log in

Review of the materials composition and performance evolution of green alkali-activated cementitious materials

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Alkali-activated cementitious materials (AAMs) are a kind of green building materials compared to Portland cement components. This review considers the related research on the AAMs to systematically summarize the results on its materials composition and performance influencing factors. The precursor material is mainly industrial solid waste containing Al2O3 and SiO2. The alkali activator is compound containing caustic alkali and basic elements, which can provide an alkaline environment. Meanwhile, some new green precursors and alkali activators are summarized in this review. The main mechanism of alkali-activated reaction is that the hydroxide ion from the alkali activator nucleophilically attacks the covalent bonds of Al–O and Si–O in the precursor material, which generates Si(OH)4 and Al(OH)4. They generate three-dimensional network gel of tetrahedral structure of [SiO4] and [AlO4] through polycondensation reaction, which forms cement stone-like block material after setting and hardening. Too high or too low concentration of alkali activator is detrimental to the workability and mechanical properties of AAMs. When the ratio of Na/K to Al is small, the mechanical properties of AAMs are reduced. When the Ca content in the AAM is high, calcium ions enter the polycondensation chain and reduce the degree of polymerization and mechanical properties of the aluminosilicate gel phase and increase the shrinkage deformation. The hydration products in the AAM are free of calcium hydroxide, calcium aluminate hydrate, ettringite, etc., and can resist the erosion of acid and sulfate media. The main aim is to provide an informed outlook on the advantages and drawbacks of AAMs and present a comprehensive review of the studies performed in this area.

Graphical abstract

Alkali-activated cementitious materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas R, Khereby MA, Ghorab HY, Elkhoshkhany N (2020) Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol Environ Policy 22(3):669–687

    CAS  Google Scholar 

  • Acevedo-Martinez E, Gomez-Zamorano LY, Escalante-Garcia JI (2012) Portland cement-blast furnace slag mortars activated using waterglass: part 1: effect of slag replacement and alkali concentration. Constr Build Mater 37:462–469

    Google Scholar 

  • Adesanya E, Ohenoja K, Luukkonen T et al (2018) One-part geopolymer cement from slag and pretreated paper sludge. J Clean Prod 185:168–175

    CAS  Google Scholar 

  • Akturk B, Akca AH, Ahmet B, Kizilkanat AB (2020) Fracture response of fiber-reinforced sodium carbonate activated slag mortars. Constr Build Mater 241:118128

    CAS  Google Scholar 

  • Albidah AS (2021) Effect of partial replacement of geopolymer binder materials on the fresh and mechanical properties: a review. Ceram Int 47(11):14923–14943

    CAS  Google Scholar 

  • Aliabdo AA, Abd Elmoaty M, Salem HA (2016a) Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr Build Mater 121:694–703

    CAS  Google Scholar 

  • Aliabdo AA, Abd Elmoaty M, Salem HA (2016b) Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Constr Build Mater 123:581–593

    CAS  Google Scholar 

  • Alonso MM, Gascó C, Morales MM et al (2019) Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, radiology and leaching behaviour. Cem Concr Compos 104:103384

    CAS  Google Scholar 

  • Balo AM, Rahier H, Mobili A et al (2018) Metakaolin-based inorganic polymer synthesis using cotton shell ash as sole alkaline activator. Constr Build Mater 191:1011–1022

    CAS  Google Scholar 

  • Bhagath Singh GVP, Subramaniam K (2019) Effect of active components on strength development in alkali-activated low calcium fly ash cements. J Sustain Cem Based Mater 8:1–19

    CAS  Google Scholar 

  • Bie R, Song X, Liu Q et al (2015) Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement. Cem Concr Compos 55:162–168

    CAS  Google Scholar 

  • Bilginer A, Canbek O, Turhan ES (2020) Activation of blast furnace slag with soda production waste. J Mater Civ Eng 32(1):04019316

    CAS  Google Scholar 

  • Bouzón N, Payá J, Borrachero MV et al (2014) Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater Lett 115:72–74

    Google Scholar 

  • Chen KY, Wu DZ, Xia LL, Cai QM, Zhang ZY (2021) Geopolymer concrete durability subjected to aggressive environments-a review of influence factors and comparison with ordinary portland cement. Constr Build Mater 279:122496

    CAS  Google Scholar 

  • Clausi M, Fernández-Jiménez AM, Palomo A et al (2018) Reuse of waste sandstone sludge via alkali activation in matrices of fly ash and metakaolin. Constr Build Mater 172:212–223

    CAS  Google Scholar 

  • Cordeiro GC, Vieira AP, Lopes ÉS (2017) Study on the pozzolanic activity of sugar cane straw ash produced using different pretreatments. Quim Nova 40:264–269

    CAS  Google Scholar 

  • De Moraes PSM, Font A, Soriano L et al (2018) Olive-stone biomass ash (OBA): an alternative alkaline source for the blast furnace slag activation. Constr Build Mater 178:327–338

    Google Scholar 

  • Deng G, He Y, Lu L et al (2020) The effect of activators on the dissolution characteristics and occurrence state of aluminum of alkali-activated metakaolin. Constr Build Mater 235:117451

    CAS  Google Scholar 

  • Deng X, Guo H, Tan H et al (2021) Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceram Int 48(2):1611–1621

    Google Scholar 

  • Dombrowski K, Buchwald A, Weil M (2007) The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci 42:3033–3043

    CAS  Google Scholar 

  • El-Feky MS, Kohail M, El-Tair AM et al (2020) Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes. Constr Build Mater 233:117268

    CAS  Google Scholar 

  • El-Hassan H, Shehab E, Al-Sallamin A (2021) Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete. J Sustain Cem Based Mater. https://doi.org/10.1080/21650373.2021.1883145

    Article  Google Scholar 

  • Fernández-Jiménez A, Puertas F (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cem Res 15(3):129–136

    Google Scholar 

  • Fernández-Jiménez A, Palomo A, Sobrados I et al (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91(1–3):111–119

    Google Scholar 

  • Font A, Soriano L, de Moraes PSM et al (2020) Design and properties of 100% waste-based ternary alkali-activated mortars: blast furnace slag, olive-stone biomass ash and rice husk ash. J Clean Prod 243:118568

    CAS  Google Scholar 

  • Fořt J, Vejmelková E, Koňáková D, Alblová N, Čáchová M, Keppert M, Černý R (2018) Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects. J Clean Prod 194:714–725

    Google Scholar 

  • Fu Q, Xu W, Zhao X et al (2021) The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int 47(21):29550–29566

    CAS  Google Scholar 

  • Gao X, Yu QL, Lazaro A, Brouwers HJH (2017) Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cem Concr Res 100:129–139

    CAS  Google Scholar 

  • Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) An overview of the chemistry of alkali-activated cement-based binders. Handbook of alkali-activated cements, mortars and concretes. Elsevier, Amsterdam The Netherlands, pp 19–47

    Google Scholar 

  • Gavali HR, Bras A, Ralegaonkar RV (2021) Cleaner construction of social housing infrastructure with load-bearing alkali-activated masonry. Clean Technol Environ Policy 23(8):2303–2318

    CAS  Google Scholar 

  • Gbozee M, Zheng K, He F et al (2018) The influence of aluminum from metakaolin on chemical binding of chloride ions in hydrated cement pastes. Appl Clay Sci 158:186–194

    CAS  Google Scholar 

  • Geng Y, Wang Z, Shen L et al (2019) Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. J Clean Prod 217:503–509

    CAS  Google Scholar 

  • Gómez-Casero MA, Pérez-Villarejo L, Castro E et al (2021) Effect of steel slag and curing temperature on the improvement in technological properties of biomass bottom ash based alkali-activated materials. Constr Build Mater 302:124205

    Google Scholar 

  • Gomez-Zamorano L, Balonis M, Erdemli B et al (2017) C-(N)-S-H and N-A-S-H gels: compositions and solubility data at 25 °C and 50 °C. J Am Ceram Soc 100:2700–2711

    CAS  Google Scholar 

  • Hajimohammadi A, Provis JL, Van Deventer JSJ (2010) Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22(18):5199–5208

    CAS  Google Scholar 

  • Hoang MD, Do QM (2020) Effect of curing regime on properties of red mud based alkali activated materials. Constr Build Mater 259:119779

    CAS  Google Scholar 

  • Huiskes DMA, Keulen A, Yu QL et al (2016) Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater Des 89:516–526

    CAS  Google Scholar 

  • Jamieson E, McLellan B, Van Riessen A et al (2015) Comparison of embodied energies of ordinary portland cement with Bayer-derived geopolymer products. J Clean Prod 99:112–118

    CAS  Google Scholar 

  • Jamieson E, Kealley CS, Van Riessen A et al (2016) Optimising ambient setting Bayer derived fly ash geopolymers. Materials 9(5):392

    Google Scholar 

  • Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci Iran 19(5):1188–1194

    CAS  Google Scholar 

  • Kamseu E, à Moungam LMB, Cannio M et al (2017) Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J Clean Prod 142:3050–3060

    CAS  Google Scholar 

  • Kang C, Kim T (2020) Pore and strength characteristics of alkali-activated slag paste with seawater. Mag Concr Res 72:499–508

    Google Scholar 

  • Kang SH, Hong SG, Moon J (2019) The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res 115:389–400

    CAS  Google Scholar 

  • Karim MR, Zain MFM, Jamil M et al (2015) Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator. Adv Mater Sci Eng. https://doi.org/10.1155/2015/247065

    Article  Google Scholar 

  • Kathirvel P, Sreekumaran S (2021) Sustainable development of ultra high performance concrete using geopolymer technology. J Build Eng 39:102267

    Google Scholar 

  • Kogbara RB, Al-Tabbaa A (2011) Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Sci Total Environ 409:2325–2335

    CAS  Google Scholar 

  • Lang L, Chen B, Chen B (2021) Strength evolutions of varying water content-dredged sludge stabilized with alkali-activated ground granulated blast-furnace slag. Constr Build Mater 275:122111

    CAS  Google Scholar 

  • Lertwattanaruk P, Sua-iam G, Makul N (2018) Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash. J Clean Prod 172:3265–3278

    CAS  Google Scholar 

  • Li N, Shi C, Zhang Z et al (2019a) A review on mixture design methods for geopolymer concrete. Compos B Eng 178:107490

    CAS  Google Scholar 

  • Li Y, Min X, Ke Y et al (2019b) Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manag 83:202–208

    CAS  Google Scholar 

  • Lu C, Zhang Z, Shi C et al (2021) Rheology of alkali-activated materials: a review. Cem Concr Compos 121:104061

    CAS  Google Scholar 

  • Luo X, Xu J, Li W et al (2014) Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Mater Lett 124:310–312

    Google Scholar 

  • Ma C, Long G, Shi Y et al (2018) Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. J Clean Prod 201:636–647

    CAS  Google Scholar 

  • Ma C, Zhao B, Guo S et al (2019) Properties and characterization of green one-part geopolymer activated by composite activators. J Clean Prod 220:188–199

    CAS  Google Scholar 

  • Ma C, Zhao B, Wang L et al (2020) Clean and low-alkalinity one-part geopolymeric cement: effects of sodium sulfate on microstructure and properties. J Clean Prod 252:119279

    CAS  Google Scholar 

  • Mañosa J, Cerezo-Piñas M, Maldonado-Alameda A et al (2021) Water treatment sludge as precursor in non-dehydroxylated kaolin-based alkali-activated cements. Appl Clay Sci 204:106032

    Google Scholar 

  • Martirena F, Monzó J (2018) Vegetable ashes as supplementary cementitious materials. Cem Concr Res 114:57–64

    CAS  Google Scholar 

  • Mellado A, Catalán C, Bouzón N, Borrachero MV, Monzó JM, Payá J (2014) Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv 4(45):23846–23852

    CAS  Google Scholar 

  • Mengasini L, Mavroulidou M, Gunn M (2021) Alkali-activated concrete mixes with ground granulated blast furnace slag and paper sludge ash in seawater environments. Sustain Chem Pharm 20:100380

    CAS  Google Scholar 

  • Muthadhi A, Kothandaraman S (2010) Optimum production conditions for reactive rice husk ash. Mater Struct 43(9):1303–1315

    CAS  Google Scholar 

  • Nimwinya E, Arjharn W, Horpibulsuk S et al (2016) A sustainable calcined water treatment sludge and rice husk ash geopolymer. J Clean Prod 119:128–134

    CAS  Google Scholar 

  • Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des 1980–2015(36):191–198

    Google Scholar 

  • Parathi S, Nagarajan P, Pallikkara SA (2021) Ecofriendly geopolymer concrete: a comprehensive review. Clean Technol Environ Policy 23(6):1701–1713

    CAS  Google Scholar 

  • Peys A, Rahier H, Pontikes Y (2016) Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl Clay Sci 119:401–409

    CAS  Google Scholar 

  • Pham PN, Duan W, Zhuge Y et al (2021) Properties of mortar incorporating untreated and treated drinking water treatment sludge. Constr Build Mater 280:122558

    CAS  Google Scholar 

  • Posi P, Ridtirud C, Ekvong C et al (2015) Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Constr Build Mater 94:408–413

    CAS  Google Scholar 

  • Rahier H, Wastiels J, Biesemans M et al (2007) Reaction mechanism, kinetics and high temperature transformations of geopolymers. J Mater Sci 42:2982–2996

    CAS  Google Scholar 

  • Rashad AM, Bai Y, Basheer PAM et al (2013) Hydration and properties of sodium sulfate activated slag. Cem Concr Compos 37:20–29

    CAS  Google Scholar 

  • Rattanasak U, Pankhet K, Chindaprasirt P (2011) Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int J Miner Metall Mater 18(3):364–369

    CAS  Google Scholar 

  • Ryu GS, Lee YB, Koh KT et al (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418

    Google Scholar 

  • Saleh AA, Abdel-Gawwad HA, Abd EL-Moghny M G, et al (2021) The sustainable utilization of weathered cement kiln dust in the cleaner production of alkali activated binder incorporating glass sludge. Constr Build Mater 300:124308

    CAS  Google Scholar 

  • Sarde B, Patil YD, Dholakiya BZ (2021) Evaluation of effectiveness of palm oil fuel ash as green filler and methyl methacrylate as additive in recycled PET resin polymer composite. J Build Eng 43:103107

    Google Scholar 

  • Sathonsaowaphak A, Chindaprasirt P, Pimraksa K (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater 168(1):44–50

    CAS  Google Scholar 

  • Shah SFA, Chen B, Ahmad MR, Haque MA (2021) Development of cleaner one-part geopolymer from lithium slag. J Clean Prod 291:125241

    Google Scholar 

  • Shi C, Qu B, Provis JL (2019a) Recent progress in low-carbon binders. Cem Concr Res 122:227–250

    CAS  Google Scholar 

  • Shi D, Yao Y, Ye J et al (2019b) Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials. Constr Build Mater 212:569–577

    CAS  Google Scholar 

  • Shi J, Tan J, Liu B et al (2021a) Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. J Hazard Mater 403:123983

    CAS  Google Scholar 

  • Shi J, Liu B, He Z et al (2021b) A green ultra-lightweight chemically foamed concrete for building exterior: a feasibility study. J Clean Prod 288:125085

    CAS  Google Scholar 

  • Shi J, Liu Y, Xu H et al (2022a) The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceram Int 48(9):12884–12896

    CAS  Google Scholar 

  • Shi J, Liu Y, Wang E et al (2022b) Physico-mechanical, thermal properties and durability of foamed geopolymer concrete containing cenospheres. Constr Build Mater 325:126841

    CAS  Google Scholar 

  • Smith RA, McBroom RB (2000) Boron oxides, boric acid, and borates. Kirk-othmer encyclopedia of chemical technology. Wiley, Hoboken, NJ

    Google Scholar 

  • Song S, Sohn D, Jennings HM et al (2000) Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 35:249–257

    CAS  Google Scholar 

  • Steveson M, Sagoe-Crentsil K (2005) Relationships between composition, structure and strength of inorganic polymers. J Mater Sci 40:4247–4259

    CAS  Google Scholar 

  • Sun X, Guo S, Dai Q et al (2017) Microstructure characterization of alkali-glass particle and alkali-glass powder reacted gels with neutron scattering and imaging techniques. Mater Charact 131:98–107

    CAS  Google Scholar 

  • Tahri W, Hu X, Shi C et al (2021) Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Constr Build Mater 293:123484

    CAS  Google Scholar 

  • Temuujin J, Minjigmaa A, Davaabal B et al (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram Int 40(10):16475–16483

    CAS  Google Scholar 

  • Tho-In T, Sata V, Boonserm K et al (2018) Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J Clean Prod 172:2892–2898

    CAS  Google Scholar 

  • Torres-Carrasco M, Puertas F (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J Clean Prod 90:397–408

    CAS  Google Scholar 

  • Varela Milla O, Rivera EB, Huang WJ et al (2013) Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J Soil Sci Plant Nut 13(2):251–266

    Google Scholar 

  • Venkatanarayanan HK, Rangaraju PR (2015) Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cem Concr Compos 55:348–363

    Google Scholar 

  • Wang H, Li H, Yan F (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Coloid Surf A 268:1–6

    CAS  Google Scholar 

  • Wianglor K, Sinthupinyo S, Piyaworapaiboon M et al (2017) Effect of alkali-activated metakaolin cement on compressive strength of mortars. Appl Clay Sci 141:272–279

    CAS  Google Scholar 

  • Xue L, Zhang Z, Wang H (2021) Hydration mechanisms and durability of hybrid alkaline cements (HACs): a review. Constr Build Mater 266:121039

    CAS  Google Scholar 

  • Yan Z, Sun Z, Yang J et al (2021) Mechanical performance and reaction mechanism of copper slag activated with sodium silicate or sodium hydroxide. Constr Build Mater 266:120900

    CAS  Google Scholar 

  • Ye N, Chen Y, Yang J et al (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78

    CAS  Google Scholar 

  • Zhang D, Wang A (2020) Review on property of geopolymer binder and its engineering application. J Archit Civ Eng 37:13–38

    CAS  Google Scholar 

  • Zhang Z, Wang H, Provis JL et al (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33

    CAS  Google Scholar 

  • Zhang B, Zhu H, Shah KW et al (2021) Optimization of mix proportion of alkali-activated slag mortars prepared with seawater and coral sand. Constr Build Mater 284:122805

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (Grant No. 51602198) and the Opening Funds of Jiangsu Key Laboratory of Construction Materials (Grant No. CM2018-02).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoniu Yu contributed to the conception of the study; Jinyan Shi and Zhihai He performed the data analyses and wrote the manuscript; Çağlar Yalçınkaya, Víctor Revilla-Cuesta and Osman Gencel helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Jinyan Shi or Zhihai He.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Shi, J., He, Z. et al. Review of the materials composition and performance evolution of green alkali-activated cementitious materials. Clean Techn Environ Policy 25, 1439–1459 (2023). https://doi.org/10.1007/s10098-023-02478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-023-02478-3

Keywords

Navigation