Ao C, Hu R, Zhao J et al (2018) Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation. Chem Eng J 338:271–277. https://doi.org/10.1016/j.cej.2018.01.045
CAS
Article
Google Scholar
Asim N, Badiei M, Alghoul MA et al (2019) Biomass and industrial wastes as resource materials for aerogel preparation : opportunities, challenges, and research directions. Ind Eng Chem Res 58:17621–17645. https://doi.org/10.1021/acs.iecr.9b02661
CAS
Article
Google Scholar
Aspinall GO (1987) Chemical modification and selective fragmentation of polysaccharides. Acc Chem Res 20:114–120. https://doi.org/10.1021/ar00135a006
CAS
Article
Google Scholar
Aurell J (2010) Aerostat sampling of PCDD/PCDF emissions from the gulf oil spill in situ burns. Environ Sci Technol 44:9431–9437. https://doi.org/10.1021/es103554y
CAS
Article
Google Scholar
Bhagyaraj S, Krupa I (2020) Alginate–halloysite nanocomposite aerogel: preparation, structure, and oil/water separation applications. Biomolecules 10:1–16. https://doi.org/10.3390/biom10121632
CAS
Article
Google Scholar
Cai Y, Lu Q, Guo X et al (2015) Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed ( Saccharina japonica). Adv Mater 27:4162–4168. https://doi.org/10.1002/adma.201404479
CAS
Article
Google Scholar
Chambers AK, Strosher M, Wootton T et al (2008) Direct measurement of fugitive emissions of hydrocarbons from a refinery. J Air Waste Manag Assoc 58:1047–1056. https://doi.org/10.3155/1047-3289.58.8.1047
CAS
Article
Google Scholar
Cheng QY, An XP, Li YD et al (2017) Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustain Chem Eng 5:11440–11450. https://doi.org/10.1021/acssuschemeng.7b02549
CAS
Article
Google Scholar
Cheng QY, Liu MC, Li YD et al (2018) Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polym Test 66:41–47. https://doi.org/10.1016/j.polymertesting.2018.01.005
CAS
Article
Google Scholar
Cheng QY, Guan CS, Li YD et al (2019a) Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose 26:2861–2872. https://doi.org/10.1007/s10570-019-02267-6
CAS
Article
Google Scholar
Cheng QY, Zhao XL, Weng YX et al (2019b) Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation. ACS Sustain Chem Eng 7:15696–15705. https://doi.org/10.1021/acssuschemeng.9b03852
CAS
Article
Google Scholar
Chilvers BL, Morgan KJ, White BJ (2021) Sources and reporting of oil spills and impacts on wildlife 1970–2018. Environ Sci Pollut Res 28:754–762. https://doi.org/10.1007/s11356-020-10538-0
CAS
Article
Google Scholar
Conejo AN, Birat J, Dutta A (2020) A review of the current environmental challenges of the steel industry and its value chain. J Environ Manag. https://doi.org/10.1016/j.jenvman.2019.109782
Article
Google Scholar
Connolly RM, Connolly FN, Hayes MA (2020) Oil spill from the Era: Mangroves taking eons to recover. Mar Pollut Bull 153:110965. https://doi.org/10.1016/j.marpolbul.2020.110965
CAS
Article
Google Scholar
Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. https://doi.org/10.1038/nrm1746
CAS
Article
Google Scholar
Cruz AM, Krausmann E (2013) Vulnerability of the oil and gas sector to climate change and extreme weather events. Clim Change 121:41–53. https://doi.org/10.1007/s10584-013-0891-4
Article
Google Scholar
Dai L, Wang B, An X et al (2017) Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydr Polym 169:9–15. https://doi.org/10.1016/j.carbpol.2017.03.096
CAS
Article
Google Scholar
Dan Y, Popowski Y, Buzhor M et al (2020) Covalent surface modification of cellulose-based textiles for oil-water separation applications. Ind Eng Chem Res 59:5456–5465. https://doi.org/10.1021/acs.iecr.9b05785
CAS
Article
Google Scholar
Dankovich TA, Gray DG (2012) Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J Adhes Sci Technol 25:699–708. https://doi.org/10.1163/016942410X525885
CAS
Article
Google Scholar
De Gouw JA, Middlebrook AM, Warneke C et al (2011) Organic aerosol formation downwind from the deepwater horizon oil spill. Science 331:1295–1299. https://doi.org/10.1126/science.1200320
CAS
Article
Google Scholar
Donaldson EC, Thomas RD, Lorenz PB (1969) Wettability determination and its effect on recovery efficiency. Soc Petrol Eng J 9:13–20. https://doi.org/10.2118/2338-pa
CAS
Article
Google Scholar
Elagin AA, Mironov MA, Ponomarev VS (2013) Polysaccharide microgels for cleaning water of petroleum and petroleum products and method for using same (variants). EP2862843
Elagin AA, Mironov MA, Shulepov ID (2015) Substance for collecting petroleum or petroleum products from surface of water and utilization method thereof. WO2015190951
Elhemmali A, Anwar S, Zhang Y, Shirokoff J (2021) A comparison of oil-water separation by gravity and electrolysis separation process. Sep Sci Technol 56:359–373. https://doi.org/10.1080/01496395.2020.1713812
CAS
Article
Google Scholar
EPA (1999) Understanding oil spills in freshwater environments. Response to Oil Spills 7:37–44
Google Scholar
Evans DD, Mulholland GW, Baum HR et al (2001) In situ burning of oil spills. J Res Natl Inst Stand Technol 106:231–278. https://doi.org/10.6028/jres.106.009
CAS
Article
Google Scholar
Farahani HF, Shi X, Simeoni A, Rangwala AS (2015) A study on burning of crude oil in ice cavities. Proc Combust Inst 35:2699–2706. https://doi.org/10.1016/j.proci.2014.05.074
Article
Google Scholar
Fingas M (2011) Oil spill science and technology. In: Fingas M (ed) An overview of in-situ burning, 1st edn. Elsivier Inc, USA, pp 737–903
Google Scholar
Fu B, Yang Q, Yang F (2020) Flexible underwater oleophobic cellulose aerogels for efficient oil/water separation. ACS Omega 5:8181–8187. https://doi.org/10.1021/acsomega.0c00440
CAS
Article
Google Scholar
Gao S, Zhu Y, Wang J et al (2018) Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation. Adv Funct Mater 1801944:1–11. https://doi.org/10.1002/adfm.201801944
CAS
Article
Google Scholar
Hasnain SMD, Hasnain S, Nayak AK (2019) Natural polysaccharides in drug delivery and biomedical applications. In: Hasnain SMD, Nayak AK (eds) Natural polysaccharides: sources and extraction methodologies, 1st edn. Elsevier Inc, USA, pp 1–14
Google Scholar
He Z, Zhang X, Batchelor W (2016) Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv 6:21435–21438. https://doi.org/10.1039/c5ra27413c
CAS
Article
Google Scholar
Hosny R, Fathy M, Ramzi M et al (2016) Treatment of the oily produced water (OPW) using coagulant mixtures. Egypt J Pet 25:391–396. https://doi.org/10.1016/j.ejpe.2015.09.006
Article
Google Scholar
Jason NH (1989) Alaska Arctic offshore oil spill response technology workshop proceedings. NIST Spec Publ 762:1–201
Google Scholar
Jing Z, Ding J, Zhang T et al (2019) Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process 115:134–142. https://doi.org/10.1016/j.fbp.2019.03.010
CAS
Article
Google Scholar
Kalliola S, Doshi B (2018) A Review of Bio-Based Materials for Oil Spill Treatment 135:262–277. https://doi.org/10.1016/j.watres.2018.02.034
CAS
Article
Google Scholar
Kang M, Kanno CM, Reid MC et al (2014) Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. Proc Natl Acad Sci USA 111:18173–18177. https://doi.org/10.1073/pnas.1408315111
CAS
Article
Google Scholar
Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64. https://doi.org/10.1021/j150331a003
CAS
Article
Google Scholar
Kollarigowda RH, Abraham S, Montemagno CD (2017) Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl Mater Interfaces 9:29812–29819. https://doi.org/10.1021/acsami.7b09087
CAS
Article
Google Scholar
Kujawinski EB, Kido Soule MC, Valentine DL et al (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45:1298–1306. https://doi.org/10.1021/es103838p
CAS
Article
Google Scholar
Larter SR, Head IM, Huang H et al (2015) Biodegradation, gas destruction and methae generation in deep subsurface petroleum reservoirs : an overview. Geological Society London Petroleum Geology Conference series. https://pgc.lyellcollection.org/content/6/1/633. Accessed 1 Jan 2005
Li Y, Samad YA, Polychronopoulou K et al (2014) Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem Eng 2:1492–1497. https://doi.org/10.1021/sc500161b
CAS
Article
Google Scholar
Li J, Li D, Yang Y et al (2016a) A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem 18:541–549. https://doi.org/10.1039/c5gc01818h
CAS
Article
Google Scholar
Li Y, Zhang H, Fan M et al (2016b) A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments. Phys Chem Chem Phys 18:25394–25400. https://doi.org/10.1039/c6cp04284h
CAS
Article
Google Scholar
Li Y, Zhang H, Fan M et al (2017) A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Sci Rep 7:1–7. https://doi.org/10.1038/srep46379
CAS
Article
Google Scholar
Lin X, Hong J (2019) Recent advances in robust superwettable membranes for oil-water separation. Adv Mater Interfaces 6:1–23. https://doi.org/10.1002/admi.201900126
Article
Google Scholar
Liu J, Li P, Chen L et al (2016) Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation. Surf Coat Technol 307:171–176. https://doi.org/10.1016/j.surfcoat.2016.08.052
CAS
Article
Google Scholar
Lyman SN, Watkins C, Jones CP et al (2017) Hydrocarbon and carbon dioxide fluxes from natural gas well pad soils and surrounding soils in Eastern Utah. Environ Sci Technol 51:11625–11633. https://doi.org/10.1021/acs.est.7b03408
CAS
Article
Google Scholar
Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. https://doi.org/10.1007/s002530100701
CAS
Article
Google Scholar
Mathew RA, Abraham M (2020) Bioremediation of diesel oil in marine environment. Oil Gas Sci Technol 75:1–6. https://doi.org/10.2516/ogst/2020053
CAS
Article
Google Scholar
Matsubayashi T, Tenjimbayashi M, Komine M et al (2017) Bioinspired hydrogel-coated mesh with superhydrophilicity and underwater superoleophobicity for efficient and ultrafast oil/water separation in harsh environments. Ind Eng Chem Res 56:7080–7085. https://doi.org/10.1021/acs.iecr.7b01619
CAS
Article
Google Scholar
McAlexander BL (2014) A suggestion to assess spilled hydrocarbons as a greenhouse gas source. Environ Impact Assess Rev 49:57–58. https://doi.org/10.1016/j.eiar.2014.07.001
Article
Google Scholar
Mcalexander BL, Tuggle KV (2015) Estimating remediation and contaminant respiration emissions for alternatives comparisons at petroleum spill sites. Remediation 25:53–67. https://doi.org/10.1002/rem.21432
Article
Google Scholar
McKinney K, Caplis J, DeVitis D, Van Dyke K (2017) Evaluation of oleophilic skimmer performance in diminishing oil slick thicknesses. Int Oil Spill Conf Proc 2017:1366–1381. https://doi.org/10.7901/2169-3358-2017.1.1366
Article
Google Scholar
Middlebrook AM, Murphy DM, Ahmadov R et al (2012) Air quality implications of the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20280–20285. https://doi.org/10.1073/pnas.1110052108
Article
Google Scholar
Nguyen ST, Feng J, Le NT, Le AT, Hoang N, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391. https://doi.org/10.1021/ie4032567
CAS
Article
Google Scholar
Rajendran S, Sadooni FN, Al-Kuwari HAS et al (2021) Monitoring oil spill in Norilsk, Russia using satellite data. Sci Rep 11:1–21. https://doi.org/10.1038/s41598-021-83260-7
CAS
Article
Google Scholar
Rana M, Chen JT, Yang S, Ma PC (2016) Biomimetic superoleophobicity of cotton fabrics for efficient oil-water separation. Adv Mater Interfaces 3:1600128. https://doi.org/10.1002/admi.201600128
CAS
Article
Google Scholar
Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155. https://doi.org/10.1016/S0892-6875(01)00216-3
CAS
Article
Google Scholar
Samuels WB, Amstutz DE, Crowley HA (2011) Arctic climate change and oil spill risk analysis. Front Earth Sci 5:350–362. https://doi.org/10.1007/s11707-011-0198-6
Article
Google Scholar
Sathiyamoorthy V, Arumugam K, Arun Pragathish M et al (2018) A review of mobile oil skimmer. Int J Eng Technol 7:58–60. https://doi.org/10.14419/ijet.v7i3.34.18716
CAS
Article
Google Scholar
Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316. https://doi.org/10.1023/A:1014356223118
CAS
Article
Google Scholar
Shahruddin MZ, Othman NH, Alias NH, Ghani SNA (2015) Desalination of produced water using bentonite as pre-treatment and membrane separation as main treatment. Procedia 195:2094–2100. https://doi.org/10.1016/j.sbspro.2015.06.237
Article
Google Scholar
Shammas, NK, Bennett, GF (2010). Principles of air flotation technology. In: Lowerence K Wang (ed) Flotation technology, 1st ed. Humana Press, Totowa, pp 1–47
Siddique T, Kuznetsova A (2020) Linking hydrocarbon biodegradation to greenhouse gas emissions from oil sands tailings and its impact on tailings management1. Can J Soil Sci 100:537–545. https://doi.org/10.1139/cjss-2019-0125
CAS
Article
Google Scholar
Sobolciak P, Popelka A, Tanvir A et al (2020) Materials and technologies for the tertiary treatment of produced water contaminated by oil impurities through nonfibrous deep-bed media: a review. Water (switzerland) 12:1–26. https://doi.org/10.3390/w12123419
Song JL, Lu Y, Luo J et al (2015) Barrel-shaped oil skimmer designed for collection of oil from spills. Adv Mater Interfaces 2:1–8. https://doi.org/10.1002/admi.201500350
CAS
Article
Google Scholar
Stom DI, Matveeva ON, Zhdanova GO et al (2021) Transformation of oil and hexadecane in soil by microbial preparations and earthworms. Bioremediat J 25:159–168. https://doi.org/10.1080/10889868.2020.1860894
CAS
Article
Google Scholar
Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782. https://doi.org/10.1016/j.cej.2017.07.142
CAS
Article
Google Scholar
Sun S, Xiao QR, Zhou X et al (2018) A bio-based environment-friendly membrane with facile preparation process for oil-water separation. Colloids Surfaces A 559:18–22. https://doi.org/10.1016/j.colsurfa.2018.09.038
CAS
Article
Google Scholar
Tchobanoglus G, Burton F, Stensel HD (2003) Wastewater engineering: treatment and reuse. In: Tchobanoglus G (ed) Wastewater engineering: an overview, 4th ed. McGraw-Hill Education, USA, pp 1–23
Google Scholar
Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interface Sci 5:245–273. https://doi.org/10.1016/0001-8686(76)80004-8
CAS
Article
Google Scholar
Tran DT, Nguyen ST, Do ND et al (2020) Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater Chem Phys 253:123363. https://doi.org/10.1016/j.matchemphys.2020.123363
CAS
Article
Google Scholar
Tuan Hoang A, Viet Pham V, Nam Nguyen D (2018) A report of oil spill recovery technologies. Int J Appl Eng Res 13:4915–4928
Google Scholar
Valentine DL, Kessler JD, Redmond MC et al (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330:208–211. https://doi.org/10.1126/science.1196830
CAS
Article
Google Scholar
Van Olphen H (1967) Polyelectrolyte reinforced aerogels of clays—application as chromatographic adsorbents. Clays Clay Miner 15:423–435. https://doi.org/10.1346/ccmn.1967.0150142
Article
Google Scholar
Votier SC, Hatchwell BJ, Beckerman A et al (2005) Oil pollution and climate have wide-scale impacts on seabird demographics. Ecol Lett 8:1157–1164. https://doi.org/10.1111/j.1461-0248.2005.00818.x
Article
Google Scholar
Wang Z, Lin S (2017) The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation. J Memb Sci 527:68–77. https://doi.org/10.1016/j.memsci.2016.12.063
CAS
Article
Google Scholar
Wang H, Hu X, Ke Z et al (2018a) Review: porous metal filters and membranes for oil-water separation. Nanoscale Res Lett 13:1–14. https://doi.org/10.1186/s11671-018-2693-0
CAS
Article
Google Scholar
Wang Z, Ji S, Zhang J et al (2018b) Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation. J Mater Chem A 6:13959–13967. https://doi.org/10.1039/c8ta03794a
CAS
Article
Google Scholar
Wang Y, Feng Y, Zhang M et al (2019a) A green strategy for preparing durable underwater superoleophobic calcium alginate hydrogel coated-meshes for oil/water separation. Int J Biol Macromol 136:13–19. https://doi.org/10.1016/j.ijbiomac.2019.06.039
CAS
Article
Google Scholar
Wang Y, Su Y, Wang W et al (2019b) The advances of polysaccharide-based aerogels: preparation and potential application. Carbohydr Polym 226:115242. https://doi.org/10.1016/j.carbpol.2019.115242
CAS
Article
Google Scholar
Wang M, Peng M, Zhu J et al (2020) Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr Polym 244:116449. https://doi.org/10.1016/j.carbpol.2020.116449
CAS
Article
Google Scholar
Welz MLS, Baloyi N, Deglon DA (2007) Oil removal from industrial wastewater using flotation in a mechanically agitated flotation cell. Water SA 33:453–458. https://doi.org/10.4314/wsa.v33i4.52939
CAS
Article
Google Scholar
Wu Z, Li Y, Zhang L et al (2017) Thiol-ene click reaction on cellulose sponge and its application for oil/water separation. RSC Adv 7:20147–20151. https://doi.org/10.1039/C7RA00847C
CAS
Article
Google Scholar
You H, Jin Y, Chen J, Li C (2017) Direct coating of a DKGM hydrogel on glass fabric for multifunctional university. Chem Eng J 334:2273–2282. https://doi.org/10.1016/j.cej.2017.12.007
CAS
Article
Google Scholar
Yu H, Liu H, Yuan X et al (2019) Chemosphere Separation of oil-water emulsion and adsorption of Cu (II) on a chitosan-cellulose acetate-TiO2 based membrane. Chemosphere 235:239–247. https://doi.org/10.1016/j.chemosphere.2019.06.060
CAS
Article
Google Scholar
Yuan J, Cui C, Qi B et al (2019) Experimental investigation of copper mesh substrate with selective wettability to separate oil/water mixture. Energies 12:1–19. https://doi.org/10.3390/en12234564
CAS
Article
Google Scholar
Zeevalkink JA, Brunsmann JJ (1983) Oil removal from water in parallel plate gravity-type separators. Water Res 17:365–373. https://doi.org/10.1016/0043-1354(83)90131-8
CAS
Article
Google Scholar
Zeng M, Echols I, Wang P et al (2018) Highly biocompatible, underwater superhydrophilic and multifunctional biopolymer membrane for efficient oil-water separation and aqueous pollutant removal. ACS Sustain Chem Eng 6:3879–3887. https://doi.org/10.1021/acssuschemeng.7b04219
CAS
Article
Google Scholar
Zhang S, Lu F, Tao L et al (2013) Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Appl Mater Interfaces 5:11971–11976. https://doi.org/10.1021/am403203q
CAS
Article
Google Scholar
Zhang T, Yuan D, Guo Q et al (2018) Food and Bioproducts Processing Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu. Food Bioprod Process 114:154–162. https://doi.org/10.1016/j.fbp.2018.12.007
CAS
Article
Google Scholar
Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:101–111. https://doi.org/10.1038/am.2014.23
CAS
Article
Google Scholar
Ziegler C, Wolf A, Liu W et al (2017) Modern inorganic aerogels. Angew Chemie - Int Ed 56:13200–13221. https://doi.org/10.1002/anie.201611552
CAS
Article
Google Scholar
Zirehpour A, Rahimpour A (2016) Membranes for wastewater treatment. In: Nanostructured polymer membranes, vol 2. Wiley, London, pp 159–207
Zulfiqar U, Thomas AG, Matthews A, Lewis DJ (2020) Surface engineering of ceramic nanomaterials for separation of oil/water mixtures. Front Chem 8:587. https://doi.org/10.3389/fchem.2020.00578
CAS
Article
Google Scholar