Skip to main content

Advertisement

Log in

Environmental impacts arising from the production of two surface coating formulations

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The objective of this study is to comparatively appraise the environmental impacts of formulating two metal surface coating chemicals (Product A and B) that can substitute each other via life cycle assessment methodology. The effect of using various energy sources during manufacturing is investigated. The functional unit is defined as 1000 kg product. A cradle-to-gate approach is adopted as system boundaries. The explored environmental impact categories are as follows: global warming (GWP), abiotic depletion (ADP fossils and elements), acidification (AP), eutrophication (EP), freshwater aquatic ecotoxicity (FAETP), human toxicity (HTP), ozone depletion (ODP), photochemical ozone creation (POCP) and terrestrial ecotoxicity (TETP) potentials. GWP of Product A is 7% higher than that of Product B. For all the other impact categories apart from GWP, Product A yields lower results. FAETP, ADP elements, ODP, EP, HTP, POCP, AP, ADP fossil and TETP of Product B are 116%, 72%, 55%, 49%, 38%, 33%, 26%, 26% and 18% higher than Product A, respectively. Noteworthy reductions on environmental impacts generated by energy consumption are obtained for almost all of the impact categories apart from ADP elements, when photovoltaic cells are used instead of grid electricity. Similarly, reductions in all environmental impact categories except for ADP elements are found in the case of using wind turbines instead of the grid. More than 95% decreases are observed for ADP fossil, AP, EP, GWP, ODP and POCP by getting energy from wind instead of grid. The most environmentally friendly energy alternative is addressed as wind energy except for ADP elements. It is recommended to perform LCA studies related to zinc phosphating chemicals, as very limited studies can be found. These results can be used to guide the environmental policies related to the chemical, metal and coating sectors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are equally contributed to all the parts of this manuscript.

Corresponding author

Correspondence to Fatos Germirli Babuna.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezginer, I., Atilgan Turkmen, B. & Germirli Babuna, F. Environmental impacts arising from the production of two surface coating formulations. Clean Techn Environ Policy 24, 1811–1822 (2022). https://doi.org/10.1007/s10098-022-02288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-022-02288-z

Keywords

Navigation