Analysis of vegetation recovery in areas impacted by bauxite mining in the Amazon Forest

Abstract

Mining activity is essential for the Brazilian economy, representing 21% of exports in 2018, but it causes several environmental impacts, including deforestation. To minimize these impacts, replanting techniques are applied for environmental recovery and regulatory compliance. In this context, this study aims to monitor vegetation recovery in decommissioned bauxite mining areas located in the Amazon rainforest. The case study was carried out in the municipality of Paragominas (state of Pará). The monitoring used the series of a newly defined spectral index, called Biomass Composite Index (BCI), and the Enhanced Vegetation Index (EVI), both from Landsat images between 1986 and 2017. The analysis was complemented by interpretation of false-color images and by in situ photographs. The method was applied for periods before mining, during exploitation, and after decommissioning, when the traditional planting technique was implemented. BCI demonstrated greater sensitivity to forest disturbance in areas affected by forest degradation and less influence of canopy homogeneity where the forest was substituted by more open formations. The height homogeneity of recovered areas also affected the EVI data more than the BCI data, since these areas presented higher values of EVI, and some areas had index values close to those detected before mine operation. The analysis could have benefited from sampling intensification, with more images analyzed per year, to overcome the presence of clouds, which block the acquisition of surface data by the sensor. Nevertheless, the method proved to be very promising and can improve the evaluation of forest recomposition even in remote areas, besides facilitating large-scale monitoring of recovered forests.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Jacon 2016)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. ABAL (2017) Brazilian Association of Aluminum. Bauxite in Brazil: Responsible Mining and Competitiveness. São Paulo-SP. April 2017. Available at: http://abal.org.br/downloads/publicacoes/bauxita-no-Brasil-mineracao-responsavel-e-competitividade-eng.pdf Accessed 24 May 2018.

  2. Almeida R, Sanchez L (2005) Revegetation of mining areas: performance monitoring and evaluation criteria. Revista Árvore 29(1):47–54. https://doi.org/10.1590/S0100-67622005000100006 (in Portuguese)

    Article  Google Scholar 

  3. Araújo RA, Silva JLS, Cugula JS, Paschoal JP, Esteves VPP, Morgado CRV (2020) Assessment of vegetation recomposition methods in a tropical forest using satellite images. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-020-01916-w

    Article  Google Scholar 

  4. Esteves VPP, Esteves EMM, Bungenstab DJ, Loebmann DGSW, Victoria DC, Vicente LE, Araújo OQF, Morgado CRV (2016) Land use change (LUC) analysis and life cycle assessment (LCA) of Brazilian soybean biodiesel. Clean Technol Environ Policy 18(6):1665–1673. https://doi.org/10.1007/s10098-016-1161-8

    CAS  Article  Google Scholar 

  5. Gao X, Huete AR, Ni W, Miura T (2000) Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74:609–620. https://doi.org/10.1016/S0034-4257(00)00150-4

    Article  Google Scholar 

  6. Gomes FP (1985) Curso de estatística experimental. Nobel, Décima primeira Edição, São Paulo, p 467p

    Google Scholar 

  7. Halik Ü, Aishan T, Betz F, Kurban A, Rouzi A (2019) Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol Eng 127:11–22

    Article  Google Scholar 

  8. Huete A, Didan K, Miura T, Rodríguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  9. Hydro (2020) Hydro Paragominas - bauxite mine. Available at: https://www.hydro.com/en-BR/about-hydro/management-and-organization/organization-overview/bauxite-and-alumina/ Accessed 18 Oct 2020.

  10. IBGE (2019) Instituto Brasileiro de Geografia e Estatística - Brazilian Institute of Geography and Statistics. Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250 000. Rio de Janeiro: IBGE, 168 p. - Relatórios metodológicos, ISSN 0101–2843. https://servicodados.ibge.gov.br/Download/Download.ashx?http=1&u=biblioteca.ibge.gov.br/visualizacao/livros/ liv101676.pdf. Accessed 17 Sep 2020 (In Portuguese).

  11. Jacon AD (2016) Caracterização espectro-sazonal de fitofisionomias do cerrado e estimativa de biomassa usando dados do sensor hyperion/EO1 [Masters Dissertation] Instituto Nacional de Pesquisas Espaciais — INPE. http://mtc-m21b.sid.inpe.br/col/sid.inpe.br/mtc-m21b/2016/03.24.17.23/doc/publicacao.pdf. Accessed 5 Nov 2020 (In Portuguese).

  12. Jacon AD, Galvão LS, Santos JR, Sano EE (2017) Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int J Remote Sens 38(15):4494–4516. https://doi.org/10.1080/01431161.2017.1320443

    Article  Google Scholar 

  13. Lei K, Pan H, Lin C (2016) A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol Eng 90:320–325. https://doi.org/10.1016/j.ecoleng.2016.01.080

    Article  Google Scholar 

  14. Liu HQ, Huete A (1995) Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465. https://doi.org/10.1109/36.377946

    Article  Google Scholar 

  15. Loebmann DGSW, Vicente LE, Spinelli-Araújo L, Koga-Vicente A, Pazianotto RAA (2020) A new approach to estimate vegetation above-ground biomass from satellite imagery optical data. Manuscript submitted to Brazilian Journal of Geophysics.

  16. Lu D, Batistella M (2005) Exploring TM image texture and its relationships with biomass estimation in Rondônia Brazilian Amazon. Acta Amazonica 35(2):249–257. https://doi.org/10.1590/S0044-59672005000200015

    Article  Google Scholar 

  17. Melo VF, Batista AH, Barbosa JZ, Barbeiro L, Gomes R, Dultra MTM (2018) Soil quality and reforestation of the Brazil nut tree (Bertholletia excelsa Bonpl.) after laterite-type bauxite mining in the Brazilian Amazon forest. Ecol Eng 125:111–118. https://doi.org/10.1016/j.ecoleng.2018.10.016

    Article  Google Scholar 

  18. MIFTS (2020) Ministry of Industry, Foreign Trade and Services. Available at: http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/balanca-comercial-brasileira-acumulado-do-ano. Accessed 15 Mar 2020 (In Portuguese).

  19. Milanović M, Tomić M, Perović V, Radovanović M, Mukherjee S, Jakšić D, Petrović M, Radovanović A (2017) Land degradation analysis of mine-impacted zone of Kolubara in Serbia. Environ Earth Sci 76(16):1–10. https://doi.org/10.1007/s12665-017-6896-y

    Article  Google Scholar 

  20. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci 100(18):10309–10313. https://doi.org/10.1073/pnas.1732458100

    CAS  Article  Google Scholar 

  21. Nagol JR, Sexton J, Kim DH, Anand A, Morton D, Vermote E, Townshend JR (2015) Bidirectional effects in Landsat reflectance estimates: Is there a problem to solve? ISPRS J Photogramm Remote Sens 103:129–135. https://doi.org/10.1016/j.isprsjprs.2014.09.006

    Article  Google Scholar 

  22. Parrota JA, Knowles OH (2001) Restoring tropical forests on lands mined for bauxite: examples from the Brazilian Amazon. Ecol Eng 17(2–3):219–239. https://doi.org/10.1016/S0925-8574(00)00141-5

    Article  Google Scholar 

  23. Portal Brasil (2017) Mining sector reaches surplus of US $ 11.5 billion. Available at: www.brasil.gov.br/economia-e-emprego/2017/07/setor-de-mineracao-atinge-superavit-de-us-11-5-bilhoes. Accessed 10 Nov 2017 (in Portuguese).

  24. Piroli EL, Becker ELS, Bolfe EL, Pereira RS (2002) Analysis of land use in the Arroio do Meio - Santa Maria - RS microbasin, by geographic information system and satellite image. Rural Sci 32(3):407–413. https://doi.org/10.1590/S0103-84782002000300007 (in Portuguese)

    Article  Google Scholar 

  25. Qi X, Wang K, Zhang C (2013) Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecol Eng 54:245–253. https://doi.org/10.1016/j.ecoleng.2013.01.002

    Article  Google Scholar 

  26. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I, 309–317

  27. Sen S, Zipper CE, Wynne RH, Donovan PF (2012) Identifying revegetated mines as disturbance/recovery trajectories using an interannual landsat chronosequence. Photogramm Eng Remote Sens 78(3):223–235

    Article  Google Scholar 

  28. Seyednasrollah B, Swenson JJ, Domec JC, Clark JS (2018) Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens Environ 209:446–455. https://doi.org/10.1016/j.rse.2018.02.059

    Article  Google Scholar 

  29. Sonter LJ, Moran CJ, Barrett DJ, Soares-Filho BS (2014) Processes of land use change in mining regions. J Clean Prod 84(1):494–501. https://doi.org/10.1016/j.jclepro.2014.03.084

    Article  Google Scholar 

  30. Strand J, Carson RT, Navrud S, Ortiz-Bobea A, Vincent JR (2017) Using the Delphi method to value protection of the Amazon rainforest. Ecol Econ 131:475–484. https://doi.org/10.1016/j.ecolecon.2016.09.028

    Article  Google Scholar 

  31. Terekhin EA, Samofalova OM (2015) Measurement of vegetation mantle change in the zone of influence of Stary Oskol-Gubkin iron ore integrated works. J Min Sci 51(1):197–202. https://doi.org/10.1134/S1062739115010263

    Article  Google Scholar 

  32. United States Geological Survey (2016) Landsat—Earth observation satellites (ver. 1.1, August 2016): U.S. Geological Survey Fact Sheet 2015–3081, 4 p., http://dx.doi.org/https://doi.org/10.3133/fs20153081

  33. Wang Y, Ziv G, Adami M, de Almeida CA, Antunes JFG, Coutinho AC, Esquerdo JCDM, Gomes AR, Galbraith D (2020) Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat Sustain 3:290–295. https://doi.org/10.1038/s41893-019-0470-4

    Article  Google Scholar 

  34. Weiss CVC, Camargo DCS, Rosca EH, Espinoza J (2015) Análise comparativa entre métodos de correção atmosférica em imagens do sensor Operational Land Imager (OLI), plataforma Landsat 8. Sci Plena 11(2):1–8 (In Portuguese)

    Google Scholar 

  35. Xu P, Zhou T, Zhao X, Luo H, Gao S, Li Z, Cao L (2018) Diverse responses of different structured forest to drought in Southwest China through remotely sensed data. Int J Appl Earth Obs Geoinf 69:217–225. https://doi.org/10.1016/j.jag.2018.03.009

    Article  Google Scholar 

  36. Xu X, Zhang D, Zhang Y, Yao S, Zhang J (2020) Evaluating the vegetation restoration potential achievement of ecological projects: a case study of Yan’an. China Land Use Policy 90:104293. https://doi.org/10.1016/j.landusepol.2019.104293

    Article  Google Scholar 

  37. Yang Y, Erskine PD, Lechner AM, Mulligan D, Zhang S, Wang Z (2018) Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J Clean Prod 84(1):353–362. https://doi.org/10.1016/j.jclepro.2018.01.050l

    Article  Google Scholar 

  38. Yao Z, Wei Z (2016) Correlation analysis between vegetation fraction and vegetation indices in reclaimed forest: a case study in Pingshuo mining area. In 2016 4th International workshop on earth observation and remote sensing applications (EORSA) (pp. 122–126). IEEE.

  39. Zhang D, Jia Q, Xu X, Yao S, Chen H, Hou X (2018) Contribution of ecological policies to vegetation restoration: a case study from Wuqi County in Shaanxi Province, China. Land Use Policy 73:400–411. https://doi.org/10.1016/j.landusepol.2018.02.020

    Article  Google Scholar 

  40. Zou X, Mõttus M (2017) Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sens 9(10):994–1008. https://doi.org/10.3390/rs9100994

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor Paulo Peçanha Esteves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, J.L.d., Araujo, R.A., Esteves, V.P.P. et al. Analysis of vegetation recovery in areas impacted by bauxite mining in the Amazon Forest. Clean Techn Environ Policy (2021). https://doi.org/10.1007/s10098-021-02052-9

Download citation

Keywords

  • Recovery of impacted areas
  • Vegetation indices
  • Remote sensing
  • Bauxite mining