Numerical and experimental investigation on the thermochemical gasification potential of Cocoa pod husk (Theobroma Cacoa) in an open-core gasifier

Abstract

Thermochemical conversion is a promising technology to generate producer gas (PG) from different types of agroforestry biomass residues. To use an existing open-core biomass gasifier for different feedstocks available in a agroforestry region, its viability must be studied systematically. Cocoa pod husk (CPH) is one of the promising agricultural wastes, widely available in tropical farmlands of hilly regions. In this study, a commercial 115 kWth biomass gasifier is used in both numerical and experimental methods to find the potential of CPH as a feedstock. The moisture of CPH is varied from 5 to 25%, and the performance of gasifier is investigated for ER between 0.20 and 0.40. The results show that compositions of CO, H2 and CH4 in PG are 20–24%, 12.0–16.5% and 2.0–3.2%, respectively, for the tested conditions. The best equivalence ratio and moisture content are identified as 0.25 and 5%, respectively. The calorific value, conversion efficiency and cold gas efficiency are found as 6.13 MJ/Nm3, 82% and 68%, respectively. The predicted performance parameters and temperature distribution are compared with experimental values and literature. Thus, CPH is identified as a promising feedstock for an open-core gasifier.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

A r :

Arrhenius rate (s1)

CCE:

Carbon conversion efficiency (%)

CFD:

Computational fluid dynamics

CG:

Constituent gases

CGE:

Cold gas efficiency (%)

CPH:

Coco Pod Husk

CV:

Calorific Value (MJ Nm−3)

CZ:

Combustion zone

E a :

Activation energy (J k mol−1)

ER:

Equivalence ratio

PG:

Producer gas

PZ:

Pyrolysis zone

RMS:

Root mean square

RZ:

Reduction zone

\(C_{x\varepsilon }\) :

Model constants

\(D_{i,m}\) :

Mass diffusion coefficient for species ‘i’ in the mixture (m2 s−1)

\(\vec{F}\) :

Body forces (Nm−3)

\(\vec{g}\) :

Acceleration due to gravity (ms−2)

\(G_{b}\) :

Buoyancy turbulence kinetic energy (m2 s2)

\(G_{{\text{k}}}\) :

Gradient turbulence kinetic energy (m2 s2)

\(\overrightarrow {{J_{i} }}\) :

Diffusion flux of species i

P :

Static pressure (Pa)

\(R_{{i{\text{r}}}}\) :

Homogeneous reaction rate of species i (kg m−3 s−1)

\({\text{R}}_{{{\text{i}},{\text{r}}}}\) :

Homogeneous reaction rate (kg m−3 s−1)

\(S_{h}\) :

Source term (Wm−1)

\(S_{k} ,S_{e}\) :

User-defined source terms

S m :

MASS added to the phase (kg)

\(\vec{v}\) :

Velocity (ms−1)

Y i :

Mass fraction of the species i (%)

Y m :

Overall dissipation turbulence rate

\({\uprho }\) :

Density (kg m−3)

\({\upmu }\) :

Dynamic viscosity (kg m−1 s−1)

\({\upvarepsilon }\) :

Turbulent dissipation rate (m2 s−3)

k :

Turbulent kinetic energy (m2 s2)

\({\upsigma }_{{\text{k}}}\) :

Turbulent Prandtl number

\({\uplambda }_{{{\text{eff}}}}\) :

Effective conductivity

References

  1. Afoakwa EO, Paterson A, Fowler M (2007) Factors influencing rheological and textural qualities in chocolate–a review. Trends Food Sci Technol 18:290–298. https://doi.org/10.1016/j.tifs.2007.02.002

    CAS  Article  Google Scholar 

  2. Andrew S, John MK, Lawrence JS, James S, Shaoping S (2010) CFD simulation of entrained- flow coal gasification: coal particle density/size fraction effects. Powder Technol 203:98–108. https://doi.org/10.1016/j.powtec.2010.03.029

    CAS  Article  Google Scholar 

  3. Atnaw SM, Sulaiman SA, Yusup S (2014) Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds. The Sci World J 14:1–9. https://doi.org/10.1155/2014/121908

    Article  Google Scholar 

  4. Augustine MA, Sekhar SJ (2019) Improvement in the calorific value of producer gas from rice husk with addition of spent tea waste as secondary fuel. Energy Fuels 33:12492–12498. https://doi.org/10.1021/acs.energyfuels.9b03052

    CAS  Article  Google Scholar 

  5. Awais M, Li W, Munir A, Omar MM, Ajmal M (2020) Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00690-5

    Article  Google Scholar 

  6. Bhavanam A, Sastry RC (2011) Biomass gasification processes in downd raft fixed bed reactors: a review. Int J Chem Eng Appl 2:425–433

    CAS  Google Scholar 

  7. Brammer JG, Bridgwater AV (2002) The influence of feedstock drying on the performance and economics of a biomass gasifier–engine CHP system. Biomass Bioenergy 22:271–281. https://doi.org/10.1016/S0961-9534(02)00003-X

    CAS  Article  Google Scholar 

  8. Beg MS, Ahmad S, Jan K, Bashir K (2017) Status, supply chain and processing of cocoa-a review. Trends Food Sci Technol 66:108–116. https://doi.org/10.1016/j.tifs.2017.06.007

    CAS  Article  Google Scholar 

  9. Chun YN, Song HG (2019) Microwave-enhanced gasification of sewage sludge waste. Environ Eng Res 24:591–599. https://doi.org/10.4491/eer.2018.324

    Article  Google Scholar 

  10. Dahunsi SO, Osueke CO, Olayanju TMA, Lawal AI (2019) Co-digestion of Theobroma cacao (Cocoa) pod husk and poultry manure for energy generation: effects of pretreatment methods. Bioresour Technol 283:229–241. https://doi.org/10.1016/j.biortech.2019.03.093

    Article  Google Scholar 

  11. Directorate of Cashewnut & Cocoa Development (DCCD) (2018). https://dccd.gov.in/Content.aspx?mid=1072&tid=1

  12. Fletcher DF, Haynes BS, Christo FC, Joseph SD (2000) A CFD based combustion model of an entrained flow biomass gasifier. Appl Math Model 24:165–182. https://doi.org/10.1016/S0307-904X(99)00025-6

    Article  Google Scholar 

  13. Gao N, Li A (2008) Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers Manag 49:3483–3490. https://doi.org/10.1016/j.enconman.2008.08.002

    CAS  Article  Google Scholar 

  14. Gerun L, Paraschiv M, Vijeu R, Bellettre J, Tazerout M, Gøbel B, Henriksen U (2008) Numerical investigation of the partial oxidation in a two-stage downdraft gasifier. Fuel 87:1383–1393. https://doi.org/10.1016/j.fuel.2007.07.009

    CAS  Article  Google Scholar 

  15. Guangul FM, Sulaiman SA, Ramli A (2014) Study of the effects of operating factors on the resulting producer gas of oil palm fronds gasification with a single throat downdraft gasifier. Renew Energ 72:271–283. https://doi.org/10.1016/j.renene.2014.07.022

    CAS  Article  Google Scholar 

  16. Holman JP (2000) Experimental methods for engineers, 7th edn. McGraw Hill Publishers, New York

    Google Scholar 

  17. Huchon V, Pinta F, Commandré JM, Van De Steene L (2020) How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset. Energy 197:117144. https://doi.org/10.1016/j.energy.2020.117144

    CAS  Article  Google Scholar 

  18. Jain AK, Goss JR (2000) Determination of reactor scaling factors for throatless rice husk gasifier. Biomass Bioenergy 18:249–256. https://doi.org/10.1016/S0961-9534(99)00083-5

    CAS  Article  Google Scholar 

  19. Jayah TH, Aye L, Fuller RJ, Stewart DF (2003) Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy 25:459–469. https://doi.org/10.1016/S0961-9534(03)00037-0

    CAS  Article  Google Scholar 

  20. Keche AJ, Gaddale APR, Tated RG (2015) Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technol Environ Policy 17:465–473. https://doi.org/10.1007/s10098-014-0804-x

    CAS  Article  Google Scholar 

  21. Kim MH, Jeong IT, Park SB, Kim JW (2019) Analysis of environmental impact of activated carbon production from wood waste. Environ Eng Res 24:117–126. https://doi.org/10.4491/eer.2018.104

    Article  Google Scholar 

  22. Kumar SS, Pitchandi K, Natarajan E (2008) Modeling and simulation of down draft wood gasifier. J Appl Sci 8:271–279. https://doi.org/10.3923/jas.2008.271.279

    CAS  Article  Google Scholar 

  23. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sust Energ Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  24. Kumar U, Paul MC (2020) Sensitivity analysis of homogeneous reactions for thermochemical conversion of biomass in a downdraft gasifier. Renew Energ 151:332–341. https://doi.org/10.1016/j.renene.2019.11.025

    CAS  Article  Google Scholar 

  25. Lee SW, Kim SB, Lee KW, Choi CS (1999) Catalytic gasification of rice straw at low temperature. Environ Eng Res 4:293–300

    Google Scholar 

  26. Magnussen BF, Hjertager BH (1976) On mathematical models of turbulent combustion with emphasis on soot formation and combustion. In: 16th international symposium on combustion, Combustion Institute, Pittsburgh.

  27. Mashayak SY (2009) CFD modeling of plasma thermal reactor for waste treatment. Mechanical Engineering, Purdue University, West Lafayette, Indiana, Master of Science

    Google Scholar 

  28. Masmoudi MA, Halouani K, Sahraoui M (2017) Comprehensive experimental investigation and numerical modeling of the combined partial oxidation-gasification zone in a pilot downdraft air blown gasifier. Energy Convers Manag 144:34–52. https://doi.org/10.1016/j.enconman.2017.04.040

    CAS  Article  Google Scholar 

  29. Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, van Leeuwen RP, Pugazhendhi A (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064. https://doi.org/10.1016/j.jclepro.2018.10.096

    CAS  Article  Google Scholar 

  30. Murugan PC, Sekhar SJ (2017) Species-Transport CFD model for the gasification of rice husk (Oryza Sativa) using downdraft gasifier. Comput Electron Agric 139:33–40. https://doi.org/10.1016/j.compag.2017.05.004

    Article  Google Scholar 

  31. Murugan PC, Sekhar SJ (2017) Numerical studies to predict the impact of air nozzle position and inclination on the performance of downdraft gratifier. J Appl Fluid Mech 10:947–955. https://doi.org/10.18869/acadpub.jafm.73.238.26446

    Article  Google Scholar 

  32. Murugan PC, Joseph Sekhar S (2017) Numerical simulation of imbert biomass gasifier to select the feedstock available in remote areas. Environ Prog Sustain Energy 36:708–716. https://doi.org/10.1002/ep.12485

    CAS  Article  Google Scholar 

  33. Nakod PR (2013) CFD modeling and validation of oxy-fired and air-fired entrained flow gasifiers. Int J Chem Phys Sci 2:28–40

    Google Scholar 

  34. Ngamsidhiphongsa N, Ponpesh P, Shotipruk A, Arpornwichanop A (2020) Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions. Energy Convers Manag 213:112808. https://doi.org/10.1016/j.enconman.2020.112808

    CAS  Article  Google Scholar 

  35. Nisamaneenate J, Atong D, Sornkade P, Sricharoenchaikul V (2015) Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renew Energ 79:45–50. https://doi.org/10.1016/j.renene.2014.09.046

    CAS  Article  Google Scholar 

  36. Nouni MR, Mullick SC, Kandpal TC (2008) Providing electricity access to remote areas in India: an approach towards identifying potential areas for decentralized electricity supply. Renew Sust Energ Rev 12:1187–1220. https://doi.org/10.1016/j.rser.2007.01.008

    Article  Google Scholar 

  37. Oddoye EO, Agyente-Badu CK, Gyedu-Akoto E (2010) Cocoa and its by-products: Identification and utilization. Chocolate in health and nutrition 7:23–38. https://doi.org/10.1007/978-1-61779-803-0_3

    Article  Google Scholar 

  38. Plis P, Wilk RK (2011) Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier. Energy 36:3838–3845. https://doi.org/10.1016/j.energy.2010.08.039

    CAS  Article  Google Scholar 

  39. Pode R, Diouf B, Pode G (2015) Sustainable rural electrification using rice husk biomass energy: a case study of Cambodia. Renew Sust Energ Rev 44:530–542. https://doi.org/10.1016/j.rser.2015.01.018

    Article  Google Scholar 

  40. Poveda-Giraldo JA, Cardona Alzate CA (2020) Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas. Can J For Res. https://doi.org/10.1139/cjfr-2020-0201

    Article  Google Scholar 

  41. Prasad L, Kumar SBLV (2015) Thermal degradation and gasification characteristics of Tung Shells as an open top downdraft wood gasifier feedstock. Clean Technol Environ Policy 17:1699–1706. https://doi.org/10.1007/s10098-014-0891-8

    CAS  Article  Google Scholar 

  42. Prasertcharoensuk P, Hernandez DA, Bull SJ, Phan AN (2018) Optimization of a throat downdraft gasifier for hydrogen production. Biomass Bioenergy 116:216–226. https://doi.org/10.1016/j.biombioe.2018.06.019

    CAS  Article  Google Scholar 

  43. Pugazhendhi A, Alagumalai A, Mathimani T, Atabani AE (2020) Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: an Indian perspective. Fuel 273:117725. https://doi.org/10.1016/j.fuel.2020.117725

    CAS  Article  Google Scholar 

  44. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851. https://doi.org/10.1016/J.RSER.2010.07.030

    CAS  Article  Google Scholar 

  45. Ravi IS, Anders B, Mikk H (2013) CFD modeling to study fluidized bed combustion and gasification. Appl Therm Eng 52:585–614. https://doi.org/10.1016/j.applthermaleng.2012.12.017

    CAS  Article  Google Scholar 

  46. Serrano C, Monedero E, Lapuerta M, Portero H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol 92:699–706. https://doi.org/10.1016/j.fuproc.2010.11.031

    CAS  Article  Google Scholar 

  47. Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour Technol 100:3127–3133. https://doi.org/10.1016/j.biortech.2009.01.024

    CAS  Article  Google Scholar 

  48. Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2006) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977. https://doi.org/10.1039/C6EE00935B

    CAS  Article  Google Scholar 

  49. Singh RN, Jena U, Patel JB, Sharma AM (2006) Feasibility study of cashew nut shells as an open core gasifier Feedstock. Renew Energ 31:481–487. https://doi.org/10.1016/j.renene.2005.04.010

    CAS  Article  Google Scholar 

  50. Singh VC, Sekhar SJ (2016) Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock. Appl Therm Eng 97:22–27. https://doi.org/10.1016/j.applthermaleng.2015.09.099

    CAS  Article  Google Scholar 

  51. Sulaiman SA, Karim MF, Nazmi M, Moni Z, Atnaw SM (2013) On gasification of different tropical plant-based biomass materials. Asian J Sci Res 6:245–253. https://doi.org/10.3923/ajsr.2013.245.253

    CAS  Article  Google Scholar 

  52. Susastriawan AA, Saptoadi H, Purnomo, (2018) Design and experimental study of pilot scale throat-less downdraft gasifier fed by rice husk and wood sawdust. Int J Sustain Energy 37:873–885. https://doi.org/10.1080/14786451.2017.1383992

    Article  Google Scholar 

  53. Tun MM, Juchelková D (2019) Estimation of greenhouse gas emissions: an alternative approach to waste management for reducing the environmental impacts in Myanmar. Environ Eng Res 24:618–629. https://doi.org/10.4491/eer.2018.364

    Article  Google Scholar 

  54. Venkatesh G, Reddy PR, Kotari S (2017) Generation of producer gas using coconut shells and sugar cane bagasse in updraft gasifier. Mater Today 4:9203–9209. https://doi.org/10.1016/j.matpr.2017.07.278

    CAS  Article  Google Scholar 

  55. Vriesmann LC, Amboni RDMC, Petkowicz CLO (2011) Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Ind Crops Prod 34:1173–1181. https://doi.org/10.1016/j.indcrop.2011.04.004

    CAS  Article  Google Scholar 

  56. Vyas DK, Singh RN (2007) Feasibility study of Jatropha seed husk as an open core gasifier feedstock. Renew Energ 32:512–517. https://doi.org/10.1016/j.renene.2006.06.006

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Murugan Paradesi Chockalingam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gunasekaran, A.P., Chockalingam, M.P., Padmavathy, S.R. et al. Numerical and experimental investigation on the thermochemical gasification potential of Cocoa pod husk (Theobroma Cacoa) in an open-core gasifier. Clean Techn Environ Policy (2021). https://doi.org/10.1007/s10098-021-02051-w

Download citation

Keywords

  • Agricultural waste
  • Carbon conversion efficiency
  • Cocoa pod husk
  • Gasifier
  • Producer gas
  • Species transport model