Predicting the performance of a photovoltaic system in the island nation, Mauritius

Abstract

Existence of microclimatic conditions in tropical island poses a challenge to integrate a greater share of renewable energy, more specifically solar energy into the power grid. Because of the high humidity and sudden cloud coverage, the power output from solar photovoltaic (SPV) plants is severely affected. In this manuscript, the performance results of a study carried out on a 15.2 MW solar photovoltaic (SPV) plant in the island nation Mauritius are analyzed. The net annual yield was 22,162 MWh. This plant has prevented 22,162 metric tonnes of CO2 being released into the atmosphere. A model is deduced to forecast the yield from the SPV plants at that location. The grid operator, the National Central Electricity Board, needs to know a priori, the energy mix for the subsequent few days so that the level of operation of fossil fuel-fired thermal plants can be tuned accordingly to minimize the environment pollution of this pristine island.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andrews RW, Pearce JM (2013) The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance. Sol Energy 91:233–241. https://doi.org/10.1016/j.solener.2013.01.030

    CAS  Article  Google Scholar 

  2. Armstrong S, Hurley WG (2010) A new methodology to optimize solar energy extraction under cloudy conditions. Renew Energy 35:780–787. https://doi.org/10.1016/j.renene.2009.10.018

    Article  Google Scholar 

  3. Besarati SM, Padilla RV, Goswami DY, Stefanakos E (2013) The potential of harnessing solar radiation in Iran: generating solar maps and viability study of PV power plants. Renew Energy 53:193–199

    Article  Google Scholar 

  4. Bryce R, Carreño IL, Kumler A, Hodge B-M, Roberts B, Martinez-Anido CB (2018) Consequences of neglecting the interannual variability of the solar resource: a case study of photovoltaic power among the Hawaiian Islands. Sol Energy 167:61–75

    Article  Google Scholar 

  5. Clean Energy Wire (2019) https://www.cleanenergywire.org/factsheets/germanys-energy-consumption-and-power-mix-charts (Visited on May 20, 2020).

  6. Darwish ZA, Kazem HA, Sopian K, Goul MAA, Alawadhi H (2015) Effect of dust pollutant type on photovoltaic performance. Renew Sustain Energy Rev 41:735–744. https://doi.org/10.1016/j.rser.2014.08.068

    Article  Google Scholar 

  7. Eldridge RG (1967) Water Vapour Absorption of Visible and Near Infrared Radiation. Appl Opt 6(4):709–713. https://doi.org/10.1364/AO.6.000709

    CAS  Article  Google Scholar 

  8. Energy Education, https://energyeducation.ca/encyclopedia/Diesel_generator (Visited on Sept. 19, 2019)

  9. Iyengar S, Sharma N, Irwin D, Shenoy P, Ramamritham K (2014) Demo abstract: solarcast - an open web service for predicting solar power generation in smart homes. In: Proceedings of the 1st ACM conference on embedded systems for energy-efficient buildings, BuildSys, vol 14. New York, USA, pp 174–175

  10. Mann MK, Spath PL (2001) A life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Product Process 3:81–91

    Article  Google Scholar 

  11. Mensah LD, Yamoah JOMS, Adaramola (2019) Performance evaluation of a utility-scale grid-tied solar photovoltaic (PV) installation in Ghana. Energy Sustain Dev 48:82–87

    Article  Google Scholar 

  12. Molg T, Cullen NJ, Kaser G (2008) Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling. J Glaciol 55(190):292–302. https://doi.org/10.3189/002214309788608822

    Article  Google Scholar 

  13. Panjwani MK, Narejo GB (2014) Effect of Humidity on the Efficiency of Solar Cell (photovoltaic). Int J Engg Res Gen Sci 2:499–503

    Google Scholar 

  14. Kang SW, Yoon H, Kim S, Baatarbileg A, Sakong J, Lee G (2018) Regional generation characteristics of mw photovoltaic power plants in Jeju Island. In: 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), pp. 52–55

  15. Khoodaruth A, Oree V, Elahee MK, Clark WW II (2017) Exploring options for a 100% renewable energy system in Mauritius by 2050. Util Policy 44:38–49

    Article  Google Scholar 

  16. Kim J-h, Yang H-J, Ko S-Y, Baatarbileg A, Kwon H, Oh S-B, Lee G (2018) Contribution of large scale PV plants to electric power during wintergpeak times in Jeju Island. In: 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), pp 41–44.

  17. Kumar P, Ojha SP, Singh R, Kishtawal CM, Pal PK (2015) Performance of weather research and forecasting model with variable horizontal resolution. Theor Appl Climatol 122:1–9. https://doi.org/10.1007/s00704-015-1607-7

    Article  Google Scholar 

  18. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925. https://doi.org/10.1016/j.rser.2012.02.012

    CAS  Article  Google Scholar 

  19. Mer S, Dudhe S, Suryawanshi S (2015) Future trends in distributed renewable systems. Int J Eng Res Electron Commun Eng 2(6):7–10

    Google Scholar 

  20. Metservice 2020, https://metservice.intnet.mu/climate-services/climate-of-mauritius.php

  21. MoE and PU Annual report 2018–2019

  22. MoE and PU RE Roadmap 2019, Renewable Energy Roadmap 2030 For The Electricity Sector, August 2019. http://publicutilities.govmu.org/English/Documents/Doc_2019/ANNUAL%2520REPORT%25202018-2019.pdf (visited on Apr. 6, 2020).

  23. Neehaula N, Jeetaha P, Deenapanray P (2020) Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environ Dev 33:100489

    Article  Google Scholar 

  24. Oree V, Rajoo A (2015) The potential for wind generated electricity in mauritius. Int J Green Energy 12:821–831

    Article  Google Scholar 

  25. Paoli C, Voyant C, Muselli M, Nivet ML (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84:2146–2160. https://doi.org/10.1016/j.solener.2010.08.011

    Article  Google Scholar 

  26. Paoli C, Voyant C, Muselli M, Nivet ML (2015) A 10 year solar radiation forecasting using Ad-Hoc time series preprocessing and neural networks. Remote Sens 7:7768–7784. https://doi.org/10.1007/978-3-642-04070-2_95

    Article  Google Scholar 

  27. Pelland S, Galanis G, Kallos G (2011) Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. Prog Photovolt 21:284–296. https://doi.org/10.1002/pip.1180

    Article  Google Scholar 

  28. Power Technology (2017) https://www.power-technology.com/features/featureovercapacity-and-the-challenges-of-going-100-renewable-5872868/ (Visited on May 20, 2020)

  29. Priya GSK, Bandyopadhyay S (2013) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15:771–782. https://doi.org/10.1007/s10098-012-0541-y

    Article  Google Scholar 

  30. PV Education, 2019. Effect of Temperature

  31. https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature (Visited on Sept. 06, 2019)

  32. Ramachandra TV, Shruthi BV (2007) Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 11:1460–1480. https://doi.org/10.1016/j.rser.2005.12.002

    Article  Google Scholar 

  33. Red Electrica (2019) https://www.ree.es/en/press-office/news/press-release/2019/12/spain-closes-2019-10-more-installed-renewable-power-capacity# (Visited on May 19, 2020).

  34. Roadmap 2030 (2019) Renewable Energy Roadmap 2030 For the Electricity Sector, Republic of Mauritius.

  35. Robinson D. (2013) https://www.oxfordenergy.org/wpcms/wp-content/uploads/2013/06/Living-with-intermittent-renewables.pdf

  36. Schwingshackl C, Petittaa M, Wagner JE, Belluardo G, Moser D, Castelli M, Zebisch M, Tetzlaff A (2013) Wind effect on PV module temperature: analysis of different techniques for an accurate estimation. Energy Procedia 40:77–86

    Article  Google Scholar 

  37. Selosse S, Garabedian S, Ricci O, Maïzi N (2018) The renewable energy revolution of reunion island. Renew Sustain Energy Rev 89:99–105

    Article  Google Scholar 

  38. Shah ASMB, Yokoyama H, Kakimoto N (2015) High-precision forecasting model of solar irradiance based on grid point value data analysis for an efficient photovoltaic system. IEEE Trans Sustain Energy 6(2):474–481. https://doi.org/10.1109/TSTE.2014.2383398

    Article  Google Scholar 

  39. Singh R, Banerjee R (2015) Estimation of rooftop solar photovoltaic potential of a city. Sol Energy 115:589–602. https://doi.org/10.1016/j.solener.2015.03.016

    Article  Google Scholar 

  40. State of Hawaii (2018). Hawaii Clean Energy Initiative, http:// www.hawaiicleanenergyinitiative.org/ (Visited on Apr. 4, 2020).

  41. Statistics Mauritius 2018, “Energy And Water Statistics – 2017. http://statsmauritius.govmu.org/English/Publications/Documents/2018/EI1386/Energy_Yr17.pdf (Visited on Sept. 10, 2019)

  42. Sturm C (2016) https://thebulletin.org/2016/05/germanys-energiewende-the-intermittency-problem-remains/# (Visited on May 20, 2020).

  43. Surroop D, Raghoo P (2018) Renewable energy to improve energy situation in African island states. Renew Sustain Energy Rev 88:176–183

    Article  Google Scholar 

  44. Thakur J, Chakraborty B (2015) A study of feasible smart tariff alternatives for smart grid integrated solar panels in India. Energy 93:963–975. https://doi.org/10.1016/j.energy.2015.09.100

    Article  Google Scholar 

  45. Tina GM, Scorfani S (2008) Electrical and thermal model for PV module temperature evaluation. The 14th IEEE Mediterranean Electrotechnical Conference, 2008, Ajaccio, France, pp. 585–590. doi: 10.1109/MELCON.2008.4618498

  46. Vasisht MS, Srinivasan J, Ramasesha SK (2016) Performance of solar photovoltaic installations: effect of seasonal variations. Sol Energy 131:39–46. https://doi.org/10.1016/j.solener.2016.02.013

    Article  Google Scholar 

  47. Vasisht SM, Ramasesha SK (2017) Forecast of solar power: a key to power management and environmental protection. Clean Techn Environ Policy 19:279–286

    Article  Google Scholar 

  48. Verhelst B, Caes D, Vandevelde L, Desmet J (2013) Prediction of Yield of solar modules as a function of technological and climatic parameters. IEEE International Conference on Clean Electrical Power, Alghero, Sardinia, pp. 1–6.

  49. World Bank (2019), https://globalsolaratlas.info/download/mauritius (visited on Apr. 4, 2020)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheela K. Ramasesha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rughoo, D., Ramasesha, S.K. Predicting the performance of a photovoltaic system in the island nation, Mauritius. Clean Techn Environ Policy 22, 1579–1587 (2020). https://doi.org/10.1007/s10098-020-01894-z

Download citation

Keywords

  • Solar photovoltaic plant
  • Atmospheric pollution
  • Power management