Computer-aided synthesis of cost-effective perovskite crystals: an emerging alternative to silicon solar cells

Abstract

One of the ways that scientists and engineers have come up to harness solar power is by inventing photovoltaics. Perovskite, which is one of the most promising materials for solar cell fabrication, has gained much attention in recent years due to its exceptional increase in performance. However, the most challenging issue that has been prevalent is the stability of perovskite solar cells. Perovskite crystal has a general formula of ABX3, where A and B are cations, and X is an anion. The Goldschmidt’s tolerance factor and the octahedral tolerance factor are the stability criteria that have to be satisfied by a crystal, for it to be considered a perovskite. Also, there are different combinations of site-A cations, site-B cations, and site-X anions that can give rise to a perovskite crystal. There is, therefore, the need to synthesize perovskite crystals which satisfy these tolerance factors to guarantee stability at a minimum bearable cost. In this paper, we present an optimization problem, where we formulate an objective function to determine site-A cation, site-B cation, and site-X anion that minimize the cost of perovskite crystal synthesis subject to the octahedral and Goldschmidt’s tolerance factors to assure stability. We further present three case studies based on this optimization approach. The results indicate that the optimal perovskite crystal structure is ammonium–magnesium–formate with a cost of 0.1784 ($/g), while the percentage variation in cost from the first-best combination to the second-best is 19.24%.

Graphic abstract

Optimal selection of ions using computational tools for computer-aided synthesis of perovskite solar cells

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agarwal S, Nair PR (2018) Performance loss analysis and design space optimization of perovskite solar cells. J Appl Phys 124(18):183101. https://doi.org/10.1063/1.5047841

    CAS  Article  Google Scholar 

  2. Albrecht KJ, Jackson GS, Braun RJ (2016) Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage. Appl Energy 165:285–296. https://doi.org/10.1016/j.apenergy.2015.11.098

    CAS  Article  Google Scholar 

  3. Ava TT, Al Mamun A, Marsillac S, Namkoong G (2019) A review: thermal stability of methylammonium lead halide based perovskite solar cells. Appl Sci 9:188. https://doi.org/10.3390/app9010188

    CAS  Article  Google Scholar 

  4. Ball JM, Stranks SD, Hörantner MT, Hüttner S, Zhang W, Crossland EJW, Ramirez I et al (2015) Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ Sci 8(2):602–609. https://doi.org/10.1039/C4EE03224A

    CAS  Article  Google Scholar 

  5. Benavides PT, Diwekar U (2015) Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 1: Group contribution method for adsorption. Chem Eng Sci 137:964–976. https://doi.org/10.1016/j.ces.2015.07.012

    CAS  Article  Google Scholar 

  6. Benavides PT, Gebreslassie BH, Diwekar UM (2015) Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 2: CAMD for adsorption of radium and barium. Chem Eng Sci 137:977–985. https://doi.org/10.1016/j.ces.2015.06.019

    CAS  Article  Google Scholar 

  7. Cai M, Yongzhen Wu, Chen H, Yang X, Qiang Y, Han L (2017) Cost-performance analysis of perovskite solar modules. Adv Sci 4(1):1600269. https://doi.org/10.1002/advs.201600269

    CAS  Article  Google Scholar 

  8. Chang NL, Ho-Baillie AWY, Basore PA, Young TL, Evans R, Egan RJ (2017) A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules: a manufacturing cost estimation method. Prog Photovolt Res Appl 25(5):390–405. https://doi.org/10.1002/pip.2871

    Article  Google Scholar 

  9. Cui J, Yuan H, Li J, Xu X, Shen Y, Lin H, Wang M (2015) Recent progress in efficient hybrid lead halide perovskite solar cells. Sci Technol Adv Mater 16:036004. https://doi.org/10.1088/1468-6996/16/3/036004

    CAS  Article  Google Scholar 

  10. Da Y, Xuan Y, Li Q (2018) Quantifying energy losses in planar perovskite solar cells. Sol Energy Mater Sol Cells 174(January):206–213. https://doi.org/10.1016/j.solmat.2017.09.002

    CAS  Article  Google Scholar 

  11. Dastidar S, Egger DA, Tan LZ, Cromer SB, Dillon AD, Liu S, Kronik L, Rappe AM, Fafarman AT (2016) High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett 16:3563–3570. https://doi.org/10.1021/acs.nanolett.6b00635

    CAS  Article  Google Scholar 

  12. Diwekar U (2008) Introduction to applied optimization. Springer, Berlin

    Google Scholar 

  13. Doshi R, Diwekar U, Benavides PT, Yenkie KM, Cabezas H (2015) Maximizing sustainability of ecosystem model through socio-economic policies derived from multivariable optimal control theory. Clean Technol Environ Policy 17:1573–1583. https://doi.org/10.1007/s10098-014-0889-2

    Article  Google Scholar 

  14. Editorial, Nature Energy (2019) A decade of perovskite photovoltaics. Nat Energy 4:1–1. https://doi.org/10.1038/s41560-018-0323-9

    Article  Google Scholar 

  15. El Chaar L, Lamont LA, El Zein N (2011) Review of photovoltaic technologies. Renew Sustain Energy Rev 15:2165–2175. https://doi.org/10.1016/j.rser.2011.01.004

    CAS  Article  Google Scholar 

  16. Eperon GE, Paternò GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ (2015) Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 3:19688–19695. https://doi.org/10.1039/C5TA06398A

    CAS  Article  Google Scholar 

  17. Futscher MH, Ehrler B (2017) Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett 2(9):2089–2095. https://doi.org/10.1021/acsenergylett.7b00596

    CAS  Article  Google Scholar 

  18. Gholipour S, Saliba M (2018) From exceptional properties to stability challenges of perovskite solar cells. Small 14:1802385. https://doi.org/10.1002/smll.201802385

    CAS  Article  Google Scholar 

  19. Giustino F, Snaith HJ (2016) Toward lead-free perovskite solar cells. ACS Energy Lett 1:1233–1240. https://doi.org/10.1021/acsenergylett.6b00499

    CAS  Article  Google Scholar 

  20. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153. https://doi.org/10.1016/S1389-5567(03)00026-1

    CAS  Article  Google Scholar 

  21. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photon 8:506–514. https://doi.org/10.1038/nphoton.2014.134

    CAS  Article  Google Scholar 

  22. Hoye RLZ, Schulz P, Schelhas LT, Holder AM, Stone KH, Perkins JD, Vigil-Fowler D et al (2017) Perovskite-inspired photovoltaic materials: toward best practices in materials characterization and calculations. Chem Mater 29(5):1964–1988. https://doi.org/10.1021/acs.chemmater.6b03852

    CAS  Article  Google Scholar 

  23. Imtiaz Hussain M, Ménézo C, Kim J-T (2018) Advances in solar thermal harvesting technology based on surface solar absorption collectors: a review. Sol Energy Mater Sol Cells 187:123–139. https://doi.org/10.1016/j.solmat.2018.07.027

    CAS  Article  Google Scholar 

  24. Irvine SJC, Barrioz V, Lamb D, Jones EW, Rowlands-Jones RL (2008) MOCVD of thin film photovoltaic solar cells—next-generation production technology}. The Fourteenth International conference on Metalorganic Vapor Phase Epitax. J Cryst Growth 310:5198–5203. https://doi.org/10.1016/j.jcrysgro.2008.07.121

    CAS  Article  Google Scholar 

  25. Jena AK, Kulkarni A, Miyasaka T (2019) Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev 119:3036–3103. https://doi.org/10.1021/acs.chemrev.8b00539

    CAS  Article  Google Scholar 

  26. Johnsson M, Lemmens P (2008) Perovskites and thin films—crystallography and chemistry. J Phys Condens Matter 20:264001. https://doi.org/10.1088/0953-8984/20/26/264001

    CAS  Article  Google Scholar 

  27. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim K-H (2018) Solar energy: Potential and future prospects. Renew Sustain Energy Rev 82:894–900. https://doi.org/10.1016/j.rser.2017.09.094

    Article  Google Scholar 

  28. Kaminski PM, Isherwood PJM, Womack G, Walls JM (2016) Optical optimization of perovskite solar cell structure for maximum current collection. In: Energy Procedia, The proceedings of the 2016 E-MRS spring meeting symposium T—Advanced materials and characterization techniques for solar cells III, 102 (Dec), pp 11–18

  29. Kieslich G, Sun S, Cheetham AK (2015) An extended tolerance factor approach for organic–inorganic perovskites. Chem Sci 6:3430–3433. https://doi.org/10.1039/C5SC00961H

    CAS  Article  Google Scholar 

  30. Kieslich G, Sun S, Cheetham AK (2014) Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci 5:4712–4715. https://doi.org/10.1039/C4SC02211D

    CAS  Article  Google Scholar 

  31. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. https://doi.org/10.1038/srep00591

    CAS  Article  Google Scholar 

  32. Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). Meet Abstr MA2006-02(7):397

    Google Scholar 

  33. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    CAS  Article  Google Scholar 

  34. Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D (2016) Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett 7:167–172. https://doi.org/10.1021/acs.jpclett.5b02597

    CAS  Article  Google Scholar 

  35. Le Donne A, Trifiletti V, Binetti S (2019) New earth-abundant thin film solar cells based on chalcogenides. Front Chem. https://doi.org/10.3389/fchem.2019.00297

    Article  Google Scholar 

  36. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. https://doi.org/10.1126/science.1228604

    CAS  Article  Google Scholar 

  37. Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst B 64:702–707. https://doi.org/10.1107/S0108768108032734

    CAS  Article  Google Scholar 

  38. Li Z, Zhao Y, Wang Xi, Sun Y, Zhao Z, Li Y, Zhou H, Chen Qi (2018) Cost analysis of perovskite tandem photovoltaics. Joule 2(8):1559–1572. https://doi.org/10.1016/j.joule.2018.05.001

    CAS  Article  Google Scholar 

  39. Liu B, Soe CMM, Stoumpos CC, Nie W, Tsai H, Lim K, Mohite AD, Kanatzidis MG, Marks TJ, Singer KD (2017) Optical properties and modeling of 2D perovskite solar cells. Solar RRL 1(8):1700062. https://doi.org/10.1002/solr.201700062

    CAS  Article  Google Scholar 

  40. Lotsch BV (2014) New light on an old story: perovskites go solar. Angew Chem Int Ed 53:635–637. https://doi.org/10.1002/anie.201309368

    CAS  Article  Google Scholar 

  41. Louwen A, van Sark WGJHM, Faaij APC, Schropp REI (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms13728

    CAS  Article  Google Scholar 

  42. Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J (2018) Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun 9(1):1–8. https://doi.org/10.1038/s41467-018-05761-w

    CAS  Article  Google Scholar 

  43. Mukherjee R, Gebreslassie B, Diwekar UM (2017) Design of novel polymeric adsorbents for metal ion removal from water using computer-aided molecular design. Clean Technol Environ Policy 19:483–499. https://doi.org/10.1007/s10098-016-1236-6

    CAS  Article  Google Scholar 

  44. National Renewable Energy Laboratory (NREL) (2020) https://www.nrel.gov/pv/cell-efficiency.html. Accessed 02 Dec 2020

  45. Palacios A, Barreneche C, Navarro ME, Ding Y (2019) Thermal energy storage technologies for concentrated solar power—a review from a materials perspective. Renew Energy. https://doi.org/10.1016/j.renene.2019.10.127

    Article  Google Scholar 

  46. Pandey AK, Tyagi VV, Selvaraj JA, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sustain Energy Rev 53:859–884. https://doi.org/10.1016/j.rser.2015.09.043

    Article  Google Scholar 

  47. Peng X, Root TW, Maravelias CT (2017) Storing solar energy with chemistry: the role of thermochemical storage in concentrating solar power. Green Chem 19:2427–2438. https://doi.org/10.1039/C7GC00023E

    CAS  Article  Google Scholar 

  48. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Khaja Nazeeruddin M, Zakeeruddin MS, Tress W, Abate A, Hagfeldt A, Grätzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997. https://doi.org/10.1039/C5EE03874J

    CAS  Article  Google Scholar 

  49. Sato T, Takagi S, Deledda S, Hauback BC, Orimo S (2016) Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci Rep 6:23592. https://doi.org/10.1038/srep23592

    CAS  Article  Google Scholar 

  50. Snaith HJ (2018) Present status and future prospects of perovskite photovoltaics. Nat Mater 17:372–376. https://doi.org/10.1038/s41563-018-0071-z

    CAS  Article  Google Scholar 

  51. Song Z, McElvany CL, Phillips AB, Celik I, Krantz PW, Watthage SC, Liyanage GK, Apul D, Heben MJ (2017) A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ Sci 10(6):1297–1305. https://doi.org/10.1039/C7EE00757D.

    CAS  Article  Google Scholar 

  52. Sun X, Asadpour R, Nie W, Mohite AD, Alam MA (2015) A physics-based analytical model for perovskite solar cells. IEEE J Photovolt 5(5):1389–1394. https://doi.org/10.1109/JPHOTOV.2015.2451000

    Article  Google Scholar 

  53. Tai Q, Tang K-C, Yan F (2019) Recent progress of inorganic perovskite solar cells. Energy Environ Sci 12:2375–2405. https://doi.org/10.1039/C9EE01479A

    CAS  Article  Google Scholar 

  54. Wang R, Mujahid M, Duan Y, Wang Z-K, Xue J, Yang Y (2019) A review of perovskites solar cell stability. Adv Funct Mater. https://doi.org/10.1002/adfm.201808843

    Article  Google Scholar 

  55. Yoo YG, Park J, Umh HN, Lee SY, Bae S, Kim YH, Jerng SE, Kim Y, Yi J (2019) Evaluating the environmental impact of the lead species in perovskite solar cells via environmental-fate modeling. J Ind Eng Chem 70:453–461. https://doi.org/10.1016/j.jiec.2018.11.008

    CAS  Article  Google Scholar 

  56. Yu C-J (2019) Advances in modelling and simulation of halide perovskites for solar cell applications. J Phys Energy 1(2):022001. https://doi.org/10.1088/2515-7655/aaf143

    Article  Google Scholar 

Download references

Funding

This work did not receive any external funding. It was supported by resources provided by the Department of Chemical Engineering at Rowan University.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Swapana S. Jerpoth (SSJ), Joseph Iannello (JI), and Emmanuel A. Aboagye (EAA). The first draft of the manuscript was written by SSJ, EAA, and Kirti M. Yenkie (KMY). Comments, reviews, and edits were done by SSJ, EAA, and KMY. This work has been supervised by KMY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kirti M. Yenkie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and materials

All the required data for this work have been made available in the supplementary material.

Code availability

Custom codes have been made available in the supplementary material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 319 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jerpoth, S.S., Iannello, J., Aboagye, E.A. et al. Computer-aided synthesis of cost-effective perovskite crystals: an emerging alternative to silicon solar cells. Clean Techn Environ Policy 22, 1187–1198 (2020). https://doi.org/10.1007/s10098-020-01861-8

Download citation

Keywords

  • Perovskite
  • Goldschmidt’s tolerance
  • Octahedral factor
  • Optimization