Techno-economic assessment of potato waste management in developing economies

Abstract

The warming climate results in higher losses in potato production, storage and processing, especially in developing countries. Feeding, anaerobic fermentation, combustion, composting and charring of potato peels with reject potatoes were analyzed on a pilot scale. It was revealed that feeding is the most promising alternative; however, additional energy inputs for potato waste steaming are advisable to break down trypsin inhibitors that naturally decrease protein digestibility. Other results indicate that it is advisable to ferment the slurry obtained with post-harvest residues into biogas and subsequently pyrolyze dewatered fermentation residues into biochar. It is appropriate to subsequently enrich the biochar by the liquid fraction of fermentation residues via filtration. Enough indications was found that this setup provides multiple horizontal synergies as well as parallel synergies, both technical and economic, that altogether create prerequisites for sustainability of developing agriculture.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

ADG:

Average daily gain

AFP:

Air-filled porosity

AL:

Albumin

BET:

Microporosity

BOD:

Biological organic demand

BR:

Basal respiration

BS:

Base saturation

BUN:

Blood urea nitrogen

CEC:

Cation exchange capacity

CH:

Cholesterol

CR:

Creatinine

HM:

Hemoglobin

HWC:

Hot water extractable carbon

HWN:

Hot water extractable nitrogen

HWP:

Hot water extractable phosphorus

L:

Labile fraction of organic matter

MEp:

Metabolizable energy for pigs

Nmin:

Mineral nitrogen

PCV:

Packed cell volume

PMN:

Potentially mineralizable nitrogen

R:

Resistant fraction of organic matter

TP:

Total porosity

TPR:

Total protein

VS:

Volatile solids

WR:

Water retention

References

  1. Achinas S, Li Y, Achinas V, Euverink GJW (2019) Biogas potential from the anaerobic digestion of potato peels: process performance and kinetics evaluation. Energies 12(12):2311. https://doi.org/10.3390/en12122311

    CAS  Article  Google Scholar 

  2. Antwi P, Li J, Boadi PO, Meng J, Shi E, Deng K, Bondinuba FK (2017) Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network. Bioresour Technol 228:106–115. https://doi.org/10.1016/j.biortech.2016.12.045

    CAS  Article  Google Scholar 

  3. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manage 30(10):1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017

    CAS  Article  Google Scholar 

  4. Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41(4):1023–1032. https://doi.org/10.2134/jeq2011.0122

    CAS  Article  Google Scholar 

  5. Dupuis JH, Liu Q (2019) Potato starch: a review of physicochemical, functional and nutritional properties. Am J Potato Res 96(2):127–138. https://doi.org/10.1007/s12230-018-09696-2

    CAS  Article  Google Scholar 

  6. Duynisveld JL, Charmley E (2018) Potato processing waste in beef finishing diets; effects on performance, carcass and meat quality. Anim Prod Sci 58(3):546–552. https://doi.org/10.1071/AN16233

    Article  Google Scholar 

  7. Fabbri D, Rombolà AG, Torri C, Spokas KA (2013) Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J Anal Appl Pyrol 103:60–67. https://doi.org/10.1016/j.jaap.2012.10.003

    CAS  Article  Google Scholar 

  8. Fehres H, Linkies A (2018) A mechanized two–step cleaning and disinfection process strongly minimizes pathogen contamination on wooden potato storage boxes. Crop Prot 103:111–114. https://doi.org/10.1016/j.cropro.2017.09.016

    Article  Google Scholar 

  9. Gao Y (2018) Potato tuberworm: impact and methods for control–mini review. CAB Rev 13(022):1–3. https://doi.org/10.1079/PAVSNNR201813022

    CAS  Article  Google Scholar 

  10. Ghinea C, Apostol LC, Prisacaru AE, Leahu A (2019) Development of a model for food waste composting. Environ Sci Pollut Res Int 26(4):4056–4069. https://doi.org/10.1007/s11356-018-3939-1

    CAS  Article  Google Scholar 

  11. Hadizadeh I, Peivastegan B, Hannukkala A, van der Wolf JM, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol 68:297–311. https://doi.org/10.1111/ppa.12956

    CAS  Article  Google Scholar 

  12. Hašková S (2017) Holistic assessment and ethical disputation on a new trend in solid biofuels. Sci Eng Ethics 23(2):509–519. https://doi.org/10.1007/s11948-016-9790-1

    Article  Google Scholar 

  13. Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279. https://doi.org/10.1007/BF02855363

    Article  Google Scholar 

  14. Honma Y, Yamakawa T (2019) High expression of GUS activities in sweet potato storage roots by sucrose–inducible minimal promoter. Plant Cell Rep 38(11):1417–1426. https://doi.org/10.1007/s00299-019-02453-7

    CAS  Article  Google Scholar 

  15. Kasmuri N, Zait MSA (2018) Enhancement of bio–plastic using eggshells and chitosan on potato starch based. Int J Eng Technol 7(3):110–115. https://doi.org/10.14419/ijet.v7i3.32.18408

    CAS  Article  Google Scholar 

  16. Khabarov N, Obersteiner M (2017) Global phosphorus fertilizer market and national policies: a case study revisiting the 2008 price peak. Front Nutr 4:22. https://doi.org/10.3389/fnut.2017.00022

    Article  Google Scholar 

  17. Kim SJ, Sohngen B, Sam AG (2019) The implications of weather, nutrient prices, and other factors on nutrient concentrations in agricultural watersheds. Sci Total Environ 650:1083–1100. https://doi.org/10.1016/j.scitotenv.2018.09.012

    CAS  Article  Google Scholar 

  18. Kolář L, Kužel S, Peterka J, Štindl P, Plát V (2008) Agrochemical value of organic matter of fermenter wastes in biogas production. Plant Soil Environ 54:321–328. https://doi.org/10.17221/412-PSE

    Article  Google Scholar 

  19. Kolář L, Kužel S, Peterka J, Borová-Batt J (2011) Utilisation of waste from digesters for biogas production. Biofuels engineering process technology. InTech, New York, pp 191–220

    Google Scholar 

  20. Mardoyan A, Braun P (2015) Analysis of Czech subsidies for solid biofuels. Int J Green Energy 12:405–408. https://doi.org/10.1080/15435075.2013.841163

    CAS  Article  Google Scholar 

  21. Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2014) Nutrient management in processing of steam-exploded lignocellulose phytomass. Chem Eng Technol 37:1945–1948. https://doi.org/10.1002/ceat.201400341

    CAS  Article  Google Scholar 

  22. Maroušek J, Stehel V, Vochozka M, Maroušková A, Kolář L (2018) Postponing of the intracellular disintegration step improves efficiency of phytomass processing. J Clean Prod 199:173–176. https://doi.org/10.1016/j.jclepro.2018.07.183

    Article  Google Scholar 

  23. Maroušek J, Strunecký O, Stehel V (2019) Biochar farming: defining economically perspective applications. Clean Technol Environ 7:1389–1395. https://doi.org/10.1007/s10098-019-01728-7

    CAS  Article  Google Scholar 

  24. May RW, Bell JM (1971) Digestible and metabolizable energy values of some feeds for the growing pig. Can J Anim Sci 51:271–278. https://doi.org/10.4141/cjas71-040

    Article  Google Scholar 

  25. Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S, Keyhani A (2008) Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energ Convers Manage 49:3566–3570. https://doi.org/10.1016/j.enconman.2008.07.003

    Article  Google Scholar 

  26. Osawa H, Akino S, Araki H, Asano K, Kondo N (2018) Effects of harvest injuries on storage rot of potato tubers infected with Phytophthora infestans. Eur J Plant Pathol 152:561–565. https://doi.org/10.1007/s10658-018-1498-4

    Article  Google Scholar 

  27. Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energ 29:1811–1823. https://doi.org/10.1016/j.renene.2004.02.005

    CAS  Article  Google Scholar 

  28. Qin J, Bian C, Liu J, Zhang J, Jin L (2019) An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci Hortic 253:61–69. https://doi.org/10.1016/j.scienta.2019.04.017

    Article  Google Scholar 

  29. Rigby H, Clarke BO, Pritchard DL, Meehan B, Beshah F, Smith SR, Porter NA (2016) A critical review of nitrogen mineralization in biosolids–amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci Total Environ 541:1310–1338. https://doi.org/10.1016/j.scitotenv.2015.08.089

    CAS  Article  Google Scholar 

  30. Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215. https://doi.org/10.1016/j.soilbio.2006.07.021

    CAS  Article  Google Scholar 

  31. Scott GJ, Rosegrant MW, Ringler C (2000) Global projections for root and tuber crops to the year 2020. Food Policy 25:561–597. https://doi.org/10.1016/S0306-9192(99)00087-1

    Article  Google Scholar 

  32. Scott GJ, Petsakos A, Juarez H (2019) Climate change, food security, and future scenarios for potato production in India to 2030. Food Secur 11(1):43–56. https://doi.org/10.1007/s12571-019-00897-z

    Article  Google Scholar 

  33. Stehel V, Maroušková A, Kolář L (2018) Techno-economic analysis of fermentation residues management places a question mark against current practices. Energ Source Part A 40:721–726. https://doi.org/10.1080/15567036.2018.1457738

    Article  Google Scholar 

  34. Škapa S, Vochozka M (2019) Waste energy recovery improves price competitiveness of artificial forage from rapeseed straw. Clean Technol Environ. https://doi.org/10.1007/s10098-019-01697-x

    Article  Google Scholar 

  35. Thu CTT, Cuong PH, Van Chao N, Trach NX, Sommer SG (2012) Manure management practices on biogas and non–biogas pig farms in developing countries–using livestock farms in Vietnam as an example. J Clean Prod 27:64–71. https://doi.org/10.1016/j.jclepro.2012.01.006

    Article  Google Scholar 

  36. Tillault AS, Yevtushenko DP (2019) Simple sequence repeat analysis of new potato varieties developed in Alberta. Can Plant Direct 3(6):e00140. https://doi.org/10.1002/pld3.140

    CAS  Article  Google Scholar 

  37. Tuśnio A, Pastuszewska B, Święch E, Taciak M (2011) Response of young pigs to feeding potato protein and potato fibre–nutritional, physiological and biochemical parameters. J Anim Feed Sci 20(3):361–378. https://doi.org/10.22358/jafs/66192/2011

    Article  Google Scholar 

  38. U.S. Environmental Protection Agency, Office of Water–Office of Science and Technology, Engineering and Analysis Division (2001) Method 1684. Total, fixed, and volatile solids in water, solids, and biosolids

  39. Vochozka M, Maroušková A, Straková J, Váchal J (2016a) Techno-economic analysis of waste paper energy utilization. Energy Source Part A 38(23):3459–3463. https://doi.org/10.1080/15567036.2016.1159262

    CAS  Article  Google Scholar 

  40. Vochozka M, Maroušková A, Váchal J, Straková J (2016b) Biochar pricing hampers biochar farming. Clean Technol Environ 18(4):1225–1231. https://doi.org/10.1007/s10098-016-1113-3

    Article  Google Scholar 

  41. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: A comprehensive review. Compr Rev Food Sci F 14:568–585. https://doi.org/10.1111/1541-4337.12143

    CAS  Article  Google Scholar 

  42. Willersinn C, Mouron P, Mack G, Siegrist M (2017) Food loss reduction from an environmental, socio–economic and consumer perspective–The case of the Swiss potato market. Waste Manage 59:451–464. https://doi.org/10.1016/j.wasman.2016.10.007

    Article  Google Scholar 

  43. Zarzecka K, Gugała M (2018) The effect of herbicides and biostimulants on sugars content in potato tubers. Plant Soil Environ 64(2):82–87. https://doi.org/10.17221/21/2018-PSE

    CAS  Article  Google Scholar 

  44. Zhang C, Lim ST, Chung HJ (2019) Physical modification of potato starch using mild heating and freezing with minor addition of gums. Food Hydrocolloids 94:294–303. https://doi.org/10.1016/j.foodhyd.2019.03.027

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josef Maroušek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maroušek, J., Rowland, Z., Valášková, K. et al. Techno-economic assessment of potato waste management in developing economies. Clean Techn Environ Policy 22, 937–944 (2020). https://doi.org/10.1007/s10098-020-01835-w

Download citation

Keywords

  • Biowaste management
  • Techno-economic assessment
  • Bioeconomy
  • Potato
  • Sustainability