Techno-economic assessment of potato waste management in developing economies


The warming climate results in higher losses in potato production, storage and processing, especially in developing countries. Feeding, anaerobic fermentation, combustion, composting and charring of potato peels with reject potatoes were analyzed on a pilot scale. It was revealed that feeding is the most promising alternative; however, additional energy inputs for potato waste steaming are advisable to break down trypsin inhibitors that naturally decrease protein digestibility. Other results indicate that it is advisable to ferment the slurry obtained with post-harvest residues into biogas and subsequently pyrolyze dewatered fermentation residues into biochar. It is appropriate to subsequently enrich the biochar by the liquid fraction of fermentation residues via filtration. Enough indications was found that this setup provides multiple horizontal synergies as well as parallel synergies, both technical and economic, that altogether create prerequisites for sustainability of developing agriculture.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1



Average daily gain


Air-filled porosity






Biological organic demand


Basal respiration


Base saturation


Blood urea nitrogen


Cation exchange capacity








Hot water extractable carbon


Hot water extractable nitrogen


Hot water extractable phosphorus


Labile fraction of organic matter


Metabolizable energy for pigs


Mineral nitrogen


Packed cell volume


Potentially mineralizable nitrogen


Resistant fraction of organic matter


Total porosity


Total protein


Volatile solids


Water retention


  1. Achinas S, Li Y, Achinas V, Euverink GJW (2019) Biogas potential from the anaerobic digestion of potato peels: process performance and kinetics evaluation. Energies 12(12):2311.

    CAS  Article  Google Scholar 

  2. Antwi P, Li J, Boadi PO, Meng J, Shi E, Deng K, Bondinuba FK (2017) Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network. Bioresour Technol 228:106–115.

    CAS  Article  Google Scholar 

  3. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manage 30(10):1898–1902.

    CAS  Article  Google Scholar 

  4. Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41(4):1023–1032.

    CAS  Article  Google Scholar 

  5. Dupuis JH, Liu Q (2019) Potato starch: a review of physicochemical, functional and nutritional properties. Am J Potato Res 96(2):127–138.

    CAS  Article  Google Scholar 

  6. Duynisveld JL, Charmley E (2018) Potato processing waste in beef finishing diets; effects on performance, carcass and meat quality. Anim Prod Sci 58(3):546–552.

    Article  Google Scholar 

  7. Fabbri D, Rombolà AG, Torri C, Spokas KA (2013) Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J Anal Appl Pyrol 103:60–67.

    CAS  Article  Google Scholar 

  8. Fehres H, Linkies A (2018) A mechanized two–step cleaning and disinfection process strongly minimizes pathogen contamination on wooden potato storage boxes. Crop Prot 103:111–114.

    Article  Google Scholar 

  9. Gao Y (2018) Potato tuberworm: impact and methods for control–mini review. CAB Rev 13(022):1–3.

    CAS  Article  Google Scholar 

  10. Ghinea C, Apostol LC, Prisacaru AE, Leahu A (2019) Development of a model for food waste composting. Environ Sci Pollut Res Int 26(4):4056–4069.

    CAS  Article  Google Scholar 

  11. Hadizadeh I, Peivastegan B, Hannukkala A, van der Wolf JM, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol 68:297–311.

    CAS  Article  Google Scholar 

  12. Hašková S (2017) Holistic assessment and ethical disputation on a new trend in solid biofuels. Sci Eng Ethics 23(2):509–519.

    Article  Google Scholar 

  13. Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279.

    Article  Google Scholar 

  14. Honma Y, Yamakawa T (2019) High expression of GUS activities in sweet potato storage roots by sucrose–inducible minimal promoter. Plant Cell Rep 38(11):1417–1426.

    CAS  Article  Google Scholar 

  15. Kasmuri N, Zait MSA (2018) Enhancement of bio–plastic using eggshells and chitosan on potato starch based. Int J Eng Technol 7(3):110–115.

    CAS  Article  Google Scholar 

  16. Khabarov N, Obersteiner M (2017) Global phosphorus fertilizer market and national policies: a case study revisiting the 2008 price peak. Front Nutr 4:22.

    Article  Google Scholar 

  17. Kim SJ, Sohngen B, Sam AG (2019) The implications of weather, nutrient prices, and other factors on nutrient concentrations in agricultural watersheds. Sci Total Environ 650:1083–1100.

    CAS  Article  Google Scholar 

  18. Kolář L, Kužel S, Peterka J, Štindl P, Plát V (2008) Agrochemical value of organic matter of fermenter wastes in biogas production. Plant Soil Environ 54:321–328.

    Article  Google Scholar 

  19. Kolář L, Kužel S, Peterka J, Borová-Batt J (2011) Utilisation of waste from digesters for biogas production. Biofuels engineering process technology. InTech, New York, pp 191–220

    Google Scholar 

  20. Mardoyan A, Braun P (2015) Analysis of Czech subsidies for solid biofuels. Int J Green Energy 12:405–408.

    CAS  Article  Google Scholar 

  21. Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2014) Nutrient management in processing of steam-exploded lignocellulose phytomass. Chem Eng Technol 37:1945–1948.

    CAS  Article  Google Scholar 

  22. Maroušek J, Stehel V, Vochozka M, Maroušková A, Kolář L (2018) Postponing of the intracellular disintegration step improves efficiency of phytomass processing. J Clean Prod 199:173–176.

    Article  Google Scholar 

  23. Maroušek J, Strunecký O, Stehel V (2019) Biochar farming: defining economically perspective applications. Clean Technol Environ 7:1389–1395.

    CAS  Article  Google Scholar 

  24. May RW, Bell JM (1971) Digestible and metabolizable energy values of some feeds for the growing pig. Can J Anim Sci 51:271–278.

    Article  Google Scholar 

  25. Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S, Keyhani A (2008) Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energ Convers Manage 49:3566–3570.

    Article  Google Scholar 

  26. Osawa H, Akino S, Araki H, Asano K, Kondo N (2018) Effects of harvest injuries on storage rot of potato tubers infected with Phytophthora infestans. Eur J Plant Pathol 152:561–565.

    Article  Google Scholar 

  27. Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energ 29:1811–1823.

    CAS  Article  Google Scholar 

  28. Qin J, Bian C, Liu J, Zhang J, Jin L (2019) An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci Hortic 253:61–69.

    Article  Google Scholar 

  29. Rigby H, Clarke BO, Pritchard DL, Meehan B, Beshah F, Smith SR, Porter NA (2016) A critical review of nitrogen mineralization in biosolids–amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci Total Environ 541:1310–1338.

    CAS  Article  Google Scholar 

  30. Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215.

    CAS  Article  Google Scholar 

  31. Scott GJ, Rosegrant MW, Ringler C (2000) Global projections for root and tuber crops to the year 2020. Food Policy 25:561–597.

    Article  Google Scholar 

  32. Scott GJ, Petsakos A, Juarez H (2019) Climate change, food security, and future scenarios for potato production in India to 2030. Food Secur 11(1):43–56.

    Article  Google Scholar 

  33. Stehel V, Maroušková A, Kolář L (2018) Techno-economic analysis of fermentation residues management places a question mark against current practices. Energ Source Part A 40:721–726.

    Article  Google Scholar 

  34. Škapa S, Vochozka M (2019) Waste energy recovery improves price competitiveness of artificial forage from rapeseed straw. Clean Technol Environ.

    Article  Google Scholar 

  35. Thu CTT, Cuong PH, Van Chao N, Trach NX, Sommer SG (2012) Manure management practices on biogas and non–biogas pig farms in developing countries–using livestock farms in Vietnam as an example. J Clean Prod 27:64–71.

    Article  Google Scholar 

  36. Tillault AS, Yevtushenko DP (2019) Simple sequence repeat analysis of new potato varieties developed in Alberta. Can Plant Direct 3(6):e00140.

    CAS  Article  Google Scholar 

  37. Tuśnio A, Pastuszewska B, Święch E, Taciak M (2011) Response of young pigs to feeding potato protein and potato fibre–nutritional, physiological and biochemical parameters. J Anim Feed Sci 20(3):361–378.

    Article  Google Scholar 

  38. U.S. Environmental Protection Agency, Office of Water–Office of Science and Technology, Engineering and Analysis Division (2001) Method 1684. Total, fixed, and volatile solids in water, solids, and biosolids

  39. Vochozka M, Maroušková A, Straková J, Váchal J (2016a) Techno-economic analysis of waste paper energy utilization. Energy Source Part A 38(23):3459–3463.

    CAS  Article  Google Scholar 

  40. Vochozka M, Maroušková A, Váchal J, Straková J (2016b) Biochar pricing hampers biochar farming. Clean Technol Environ 18(4):1225–1231.

    Article  Google Scholar 

  41. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: A comprehensive review. Compr Rev Food Sci F 14:568–585.

    CAS  Article  Google Scholar 

  42. Willersinn C, Mouron P, Mack G, Siegrist M (2017) Food loss reduction from an environmental, socio–economic and consumer perspective–The case of the Swiss potato market. Waste Manage 59:451–464.

    Article  Google Scholar 

  43. Zarzecka K, Gugała M (2018) The effect of herbicides and biostimulants on sugars content in potato tubers. Plant Soil Environ 64(2):82–87.

    CAS  Article  Google Scholar 

  44. Zhang C, Lim ST, Chung HJ (2019) Physical modification of potato starch using mild heating and freezing with minor addition of gums. Food Hydrocolloids 94:294–303.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Josef Maroušek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maroušek, J., Rowland, Z., Valášková, K. et al. Techno-economic assessment of potato waste management in developing economies. Clean Techn Environ Policy 22, 937–944 (2020).

Download citation


  • Biowaste management
  • Techno-economic assessment
  • Bioeconomy
  • Potato
  • Sustainability