Pretreatment for the reclamation of rendering plant secondary effluent with NF/RO: UF flat sheet versus UF hollow fiber membranes

Abstract

Rendering plants produce large amounts of wastewater that could be reused at the plant with adequate treatment. Membrane fouling is the main problem during the treatment of this type of wastewater by nanofiltration (NF) and reverse osmosis (RO). In order to reduce membrane fouling, the rendering plant secondary effluent was pretreated with two types of ultrafiltration (UF) membranes: MW as a flat sheet and ZW-1 as a hollow fiber membrane. The fouling on NF/RO flat sheet membranes (NF90, NF270, and XLE) was evaluated with the resistance-in-series model, while the fouling mechanisms were assessed with crossflow models. The UF, NF, and RO permeates were characterized to determine its suitability for reuse in the rendering plant. ZW-1 reduced the flux decline by 67.0% for NF270, 1.6% for NF90, and 38.0% for XLE; while MW reduced the flux decline by 72.4% for NF270, 50.1% for NF90, and 68.1% for XLE. The pretreatment with MW resulted in higher fouling reduction and a permeate that is appropriate for industrial reuse (washing purposes in the rendering plant). In terms of fouling resistance, NF270 and XLE membranes showed less fouling resistance during the treatment compared to NF90. The highest quality of permeate was obtained with XLE membrane, satisfying the water requirements for steam generation. The predominant fouling mechanisms for NF/RO were partial and complete pore blocking. The best combination for rendering plant secondary effluent reclamation was UF with MW membrane and RO with XLE membrane.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. ABMA (2005) Boiler water quality requirements and associated steam quality for industrial/commercial and institutional boilers. American Boiler Manufacturers Association, Vienna

    Google Scholar 

  2. Al-Mobayed AS, Mubeen FM, Balaji S (2005) Comparison of the performance of hollow fine fiber and spiral-wound membranes in the Al-Jubail SWRO desalination plant. Desalination 178:273–286. https://doi.org/10.1016/j.desal.2004.11.049

    Article  CAS  Google Scholar 

  3. Andrade LH, Mendes FDS, Espindola JC, Amaral MCS (2014) Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep Purif Technol 126:21–29. https://doi.org/10.1016/j.seppur.2014.01.056

    Article  CAS  Google Scholar 

  4. Bu F, Gao B, Yue Q, Shen X, Wang W (2019) Characterization of dissolved organic matter and membrane fouling in coagulation-ultrafiltration process treating micro-polluted surface water. J Environ Sci 75:318–324. https://doi.org/10.1016/j.jes.2018.04.015

    Article  Google Scholar 

  5. Butt FH, Rahman F, Baduruthamal U (1997a) Hollow fine fiber vs. spiral-wound reverse osmosis desalination membranes part 2: membrane autopsy. Desalination 109:83–94. https://doi.org/10.1016/S0011-9164(97)00054-4

    Article  CAS  Google Scholar 

  6. Butt FH, Rahman F, Baduruthamal U (1997b) Hollow fine fiber vs. spiral-wound RO desalination membranes part 1: pilot plant evaluation. Desalination 109:67–82. https://doi.org/10.1016/S0011-9164(97)00053-2

    Article  CAS  Google Scholar 

  7. Chang H et al (2019) An integrated coagulation–ultrafiltration–nanofiltration process for internal reuse of shale gas flowback and produced water. Sep Purif Technol 211:310–321. https://doi.org/10.1016/j.seppur.2018.09.081

    Article  CAS  Google Scholar 

  8. Chon K, Cho J, Shon HK, Chon K (2012) Advanced characterization of organic foulants of ultrafiltration and reverse osmosis from water reclamation. Desalination 301:59–66. https://doi.org/10.1016/j.desal.2012.06.011

    Article  CAS  Google Scholar 

  9. Chu CP, Jiao SR, Lin HM, Yang CH, Chung YJ (2007) Recycling the wastewater of the industrial park in Northern Taiwan using UF-RO system: in-situ pilot testing and cost analysis. J Water Supply Res Technol AQUA 56:533–540. https://doi.org/10.2166/aqua.2007.024

    Article  CAS  Google Scholar 

  10. Chu CP, Jiao SR, Hung JM, Lu CJ, Chung YJ (2009) Reclamation of the wastewater from an industrial park using hollow-fibre and spiral-wound membranes: 50 m3 d−1 pilot testing and cost evaluation. Environ Technol 30:871–877. https://doi.org/10.1080/09593330802343033

    Article  CAS  Google Scholar 

  11. Dolar D, Košutić K, Strmecky T (2016) Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO. Sep Purif Technol 168:39–46. https://doi.org/10.1016/j.seppur.2016.05.016

    Article  CAS  Google Scholar 

  12. Dolar D, Racar M, Košutić K (2019) Municipal wastewater reclamation and water reuse for irrigation by membrane processes. Chem Biochem Eng Q 33:417–425. https://doi.org/10.15255/CABEQ.2018.1571

    Article  CAS  Google Scholar 

  13. Epa U (1999) Wastewater technology fact sheet—clorine desinfection. US EPA, Washington

    Google Scholar 

  14. EPA U (2012) Guidelines for water reuse. Washington, DC

  15. EU (2000) Directive 2000/60/EC the EU water framework directive-Integrated river based management for Europe (Legislative)

  16. EU (2018) ANNEXES to the proposal for a regulation of the European parliament and of the council on minimum requirements for water reuse. European Commission, Brussels

    Google Scholar 

  17. Fatta-Kassinos D, Dionysiou DD, Kümmerer K (2016) Advanced treatment technologies for urban wastewater reuse. The handbook of environmental chemistry, vol 45. Springer International Publishing. https://doi.org/10.1007/978-3-319-23886-9

    Google Scholar 

  18. Field RW, Pearce GK (2011) Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv Colloid Interface Sci 164:38–44. https://doi.org/10.1016/j.cis.2010.12.008

    Article  CAS  Google Scholar 

  19. Field RW, Wu JJ (2011) Modelling of permeability loss in membrane filtration: re-examination of fundamental fouling equations and their link to critical flux. Desalination 283:68–74. https://doi.org/10.1016/j.desal.2011.04.035

    Article  CAS  Google Scholar 

  20. Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100:259–272. https://doi.org/10.1016/0376-7388(94)00265-Z

    Article  CAS  Google Scholar 

  21. Gorenflo A, Redondo JA, Reverberi F (2005) Basic options and two case studies for retrofitting hollow fiber elements by spiral-wound RO technology. Desalination 178:247–260. https://doi.org/10.1016/j.desal.2004.12.021

    Article  CAS  Google Scholar 

  22. Hermia J (1985) Blocking filtration. Application to non-Newtonian fluids. In: Rushton A (ed) Mathematical models and design methods in solid–liquid separation. Springer, Dordrecht, pp 83–89. https://doi.org/10.1007/978-94-009-5091-7_5

    Google Scholar 

  23. Jacangelo JG, Rhodes Trussell R, Watson M (1997) Role of membrane technology in drinking water treatment in the United States. Desalination 113:119–127. https://doi.org/10.1016/S0011-9164(97)00120-3

    Article  CAS  Google Scholar 

  24. Jarusutthirak C, Amy G (2006) Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ Sci Technol 40:969–974. https://doi.org/10.1021/es050987a

    Article  CAS  Google Scholar 

  25. Jarusutthirak C, Amy G, Croué J-P (2002) Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination 145:247–255. https://doi.org/10.1016/S0011-9164(02)00419-8

    Article  CAS  Google Scholar 

  26. Lin H et al (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci 460:110–125. https://doi.org/10.1016/j.memsci.2014.02.034

    Article  CAS  Google Scholar 

  27. Lyu S, Chen W, Zhang W, Fan Y, Jiao W (2016) Wastewater reclamation and reuse in China: opportunities and challenges. J Environ Sci 39:86–96. https://doi.org/10.1016/j.jes.2015.11.012

    Article  Google Scholar 

  28. Michael-Kordatou I, Michael C, Duan X, He X, Dionysiou DD, Mills MA, Fatta-Kassinos D (2015) Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water Res 77:213–248. https://doi.org/10.1016/j.watres.2015.03.011

    Article  CAS  Google Scholar 

  29. Muthukumaran S, Nguyen DA, Baskaran K (2011) Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination 279:383–389. https://doi.org/10.1016/j.desal.2011.06.040

    Article  CAS  Google Scholar 

  30. Nataraj S, Schomäcker R, Kraume M, Mishra IM, Drews A (2008) Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. J Membr Sci 308:152–161. https://doi.org/10.1016/j.memsci.2007.09.060

    Article  CAS  Google Scholar 

  31. Park J, Lee S, You J, Park S, Ahn Y, Jung W, Cho KH (2018) Evaluation of fouling in nanofiltration for desalination using a resistance-in-series model and optical coherence tomography. Sci Total Environ 642:349–355. https://doi.org/10.1016/j.scitotenv.2018.06.041

    Article  CAS  Google Scholar 

  32. Polasek V, Talo S, Sharif T (2003) Conversion from hollow fiber to spiral technology in large seawater RO systems—process design and economics. Desalination 156:239–247. https://doi.org/10.1016/S0011-9164(03)00346-1

    Article  CAS  Google Scholar 

  33. Racar M, Dolar D, Košutić K (2017a) Chemical cleaning of flat sheet ultrafiltration membranes fouled by effluent organic matter. Sep Purif Technol 188:140–146. https://doi.org/10.1016/j.seppur.2017.07.041

    Article  CAS  Google Scholar 

  34. Racar M, Dolar D, Špehar A, Košutić K (2017b) Application of UF/NF/RO membranes for treatment and reuse of rendering plant wastewater. Process Saf Environ 105:386–392. https://doi.org/10.1016/j.psep.2016.11.015

    Article  CAS  Google Scholar 

  35. Racar M, Dolar D, Špehar A, Kraš A, Košutić K (2017c) Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent. Chemosphere 181:485–491. https://doi.org/10.1016/j.chemosphere.2017.04.108

    Article  CAS  Google Scholar 

  36. Racar M, Dolar D, Farkaš M, Milčić N, Špehar A, Košutić K (2019) Rendering plant wastewater reclamation by coagulation, sand filtration, and ultrafiltration. Chemosphere 227:207–215. https://doi.org/10.1016/j.chemosphere.2019.04.045

    Article  CAS  Google Scholar 

  37. Reeve P, Regel R, Dreyfus J, Monis P, Lau M, King B, van den Akker B (2016) Virus removal of new and aged UF membranes at full-scale in a wastewater reclamation plant. Environ Sci Water Res 2:1014–1021. https://doi.org/10.1039/c6ew00197a

    Article  CAS  Google Scholar 

  38. Salgot M, Folch M (2018) Wastewater treatment and water reuse. Curr Opin Environ Sci Health 2:64–74. https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  39. Sanz LA, Gawlik B (2014) Water reuse in Europe—relevant guidelines, needs for and barriers to innovation. https://doi.org/10.2788/29234

  40. Shim Y, Lee H-J, Lee S, Moon S-H, Cho J (2002) Effects of natural organic matter and ionic species on membrane surface charge. Environ Sci Technol 36:3864–3871. https://doi.org/10.1021/es015880b

    Article  CAS  Google Scholar 

  41. Shon HK, Vigneswaran S, Snyder SA (2006) Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit Rev Environ Sci Technol 36:327–374. https://doi.org/10.1080/10643380600580011

    Article  CAS  Google Scholar 

  42. Shukla SK, Kumar V, Van Doan T, Yoo K, Kim Y, Park J (2015) Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technol Environ Policy 17:781–788. https://doi.org/10.1007/s10098-014-0836-2

    Article  CAS  Google Scholar 

  43. Sindt GL (2006) Environmental issues in the rendering industry. In: Meeker DL (ed) Essential rendering. The National Renderers Association, The Fats and Proteins Research Foundation, The Animal Protein Producers Industry, Arlington, pp 245–272

    Google Scholar 

  44. Suárez A, Fidalgo T, Riera FA (2014) Recovery of dairy industry wastewaters by reverse osmosis. Production of boiler water. Sep Purif Technol 133:204–211. https://doi.org/10.1016/j.seppur.2014.06.041

    Article  CAS  Google Scholar 

  45. Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242:168–182. https://doi.org/10.1016/j.desal.2008.04.004

    Article  CAS  Google Scholar 

  46. Thakura R, Chakrabortty S, Pal P (2015) Treating complex industrial wastewater in a new membrane-integrated closed loop system for recovery and reuse. Clean Technol Environ Policy 17:2299–2310. https://doi.org/10.1007/s10098-015-0971-4

    Article  CAS  Google Scholar 

  47. Voulvoulis N (2018) Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr Opin Environ Sci Health 2:32–45. https://doi.org/10.1016/j.coesh.2018.01.005

    Article  Google Scholar 

  48. WEF (2015) Global risks 2015, 10th edn. World Economic Forum, Geneva

    Google Scholar 

  49. WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater, vol 1. World Health Organization, Geneva

    Google Scholar 

  50. Zanetti F, De Luca G, Sacchetti R (2010) Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresour Technol 101:3768–3771. https://doi.org/10.1016/j.biortech.2009.12.091

    Article  CAS  Google Scholar 

  51. Zhang L, Wang L, Zhang G, Wang X (2009) Fouling of nanofiltration membrane by effluent organic matter: characterization using different organic fractions in wastewater. J Environ Sci 21:49–53. https://doi.org/10.1016/S1001-0742(09)60010-3

    Article  Google Scholar 

Download references

Acknowledgements

This study has been financed by The Government of the Republic of Croatia within Program for encouraging research and development activities in the field of climate change for period 2015 and 2016 with support of The Ministry of Science and Education, The Ministry of Environmental and Nature Protection, The Environmental Protection and Energy Efficiency Fund, and The Croatian Science Foundation under the project Direct reuse of municipal wastewater for agriculture irrigation with membrane technologies (ReHOHMem) (PKP-2016-06-8522).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Racar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 429 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Racar, M., Obajdin, K., Dolar, D. et al. Pretreatment for the reclamation of rendering plant secondary effluent with NF/RO: UF flat sheet versus UF hollow fiber membranes. Clean Techn Environ Policy 22, 399–408 (2020). https://doi.org/10.1007/s10098-019-01789-8

Download citation

Keywords

  • Rendering plant secondary effluent
  • Ultrafiltration
  • Fouling
  • Hollow fiber
  • Flat sheet
  • Nanofiltration