Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments

Abstract

The presence of residual antibiotics in the environment is one of the major global concerns, and it is imperative to control their discharge in water bodies. The present study used a combination of Fe3O4 nanoparticles/persulfate in conjunction with ultrasound to address this problem; the influence of effective parameters in the remediation process, persulfate concentration, nanoparticle concentrations, initial antibiotic concentration, contact time and pH was investigated. The highest removal rate of tetracycline antibiotic was observed at pH 10, the amount of magnetic nanoparticles being (0.3 g/L), with persulfate concentration at 4 mM for the removal of antibiotic concentration at 10 mg/L; TC and COD removal efficiency is 92.99 and 79.85%, respectively. The deployment of sonocatalytic process, along with the use of magnetite nanoparticles and persulfates as oxidizing agents, appears to be an effective means for decreasing the high-level tetracycline concentration in water.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bacanli M, Başaran N (2019) Importance of antibiotic residues in animal food. Food Chem Toxicol 125: 462–466

    Article  CAS  Google Scholar 

  2. Bahadir T, Celebi H, Simsek I, Tulun S (2019) Antibiotic applications in fish farms and environmental problems. Turk J Eng 3:60–67

    Google Scholar 

  3. Chatel G, Colmenares JC (2017) Sonochemistry: from basic principles to innovative applications. Top Curr Chem 375:8. https://doi.org/10.1007/s41061-016-0096-1

    Article  CAS  Google Scholar 

  4. Colmenares JC et al (2016) Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl Catal B 183:107–112. https://doi.org/10.1016/j.apcatb.2015.10.034

    Article  CAS  Google Scholar 

  5. Fang G, Gao J, Dionysiou DD, Liu C, Zhou D (2013) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611

    Article  CAS  Google Scholar 

  6. Feiz-Arefi M, Ghorbani-Shahna F, Bahrami A, Ebrahimi H, Mahjub A (2019) Photocatalytic removal of methylbenzene vapors by MnO2/Al2O3/Fe2O3 nano composite. Iran J Health Saf Environ 6:1158–1166

    Google Scholar 

  7. Fernandez Rivas D, Kuhn S (2016) Synergy of microfluidics and ultrasound. Top Curr Chem 374:70. https://doi.org/10.1007/s41061-016-0070-y

    Article  CAS  Google Scholar 

  8. Ghasemi A, Kheirmand M, Heli H (2019) Synthesis of novel NiFe2O4 nanospheres for high performance pseudocapacitor applications. Russ J Electrochem 55:206–214. https://doi.org/10.1134/s1023193519020022

    Article  CAS  Google Scholar 

  9. Ghauch A, Ayoub G, Naim S (2013) Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem Eng J 228:1168–1181. https://doi.org/10.1016/j.cej.2013.05.045

    Article  CAS  Google Scholar 

  10. Gustafson R, Bowen R (1997) Antibiotic use in animal agriculture. J Appl Microbiol 83:531–541

    Article  CAS  Google Scholar 

  11. Heidari MR, Malakootian M (2018) Removal of cyanide from synthetic wastewater by combined coagulation and advanced oxidation process. Desalination Water Treat 133:204–211

    Article  CAS  Google Scholar 

  12. Jeong J, Song W, Cooper WJ, Jung J, Greaves J (2010) Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78:533–540

    Article  CAS  Google Scholar 

  13. Khachatourians GG (1998) Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. CMAJ 159:1129–1136

    CAS  Google Scholar 

  14. Khan FU et al (2017a) Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb Pathog 107:419–424. https://doi.org/10.1016/j.micpath.2017.04.024

    Article  CAS  Google Scholar 

  15. Khan ZUH et al (2017b) Biomedical applications of green synthesized Nobel metal nanoparticles. J Photochem Photobiol B 173:150–164. https://doi.org/10.1016/j.jphotobiol.2017.05.034

    Article  CAS  Google Scholar 

  16. Khatami M, Alijani HQ, Fakheri B, Mobasseri MM, Heydarpour M, Farahani ZK, Khan AU (2019) Super-paramagnetic iron oxide nanoparticles (SPIONs): greener synthesis using Stevia plant and evaluation of its antioxidant properties. J Clean Prod 208:1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182

    Article  CAS  Google Scholar 

  17. Lacasse E, Brouillette E, Larose A, Parr TR, Rubio A, Malouin F (2019) In vitro activity of tebipenem (SPR859) against penicillin-binding proteins of gram-negative and gram-positive bacteria. Antimicrob Agents Chemother 63:e02181-18

    Article  Google Scholar 

  18. Lan L, Kong X, Sun H, Li C, Liu D (2019) High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J Environ Manage 231:439–445

    Article  CAS  Google Scholar 

  19. Li X et al (2019) Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: performance, mechanism, and implication. Biores Technol 279:108–116

    Article  CAS  Google Scholar 

  20. Malakootian M, Gharaghani MA, Dehdarirad A, Khatami M, Ahmadian M, Heidari MR, Mahdizadeh H (2019) ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3). J Mol Struct 1176:766–776. https://doi.org/10.1016/j.molstruc.2018.09.033

    Article  CAS  Google Scholar 

  21. Martina K, Tagliapietra S, Barge A, Cravotto G (2016) Combined microwaves/ultrasound, a hybrid technology. Top Curr Chem 374:79. https://doi.org/10.1007/s41061-016-0082-7

    Article  CAS  Google Scholar 

  22. Murugesan R, Sivakumar S, Karthik K, Anandan P, Haris M (2019) Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Appl Phys A 125:281. https://doi.org/10.1007/s00339-019-2577-x

    Article  CAS  Google Scholar 

  23. Nadour M, Boukraa F, Benaboura A (2019) Removal of diclofenac, paracetamol and metronidazole using a carbon-polymeric membrane. J Environ Chem Eng 7:103080. https://doi.org/10.1016/j.jece.2019.103080

    Article  CAS  Google Scholar 

  24. Nagaraju G, Karthik K, Shashank M (2019) Ultrasound-assisted Ta2O5 nanoparticles and their photocatalytic and biological applications. Microchem J 147:749–754. https://doi.org/10.1016/j.microc.2019.03.094

    Article  CAS  Google Scholar 

  25. Nasrollahzadeh M, Sajjadi M, Varma RS (2019) A catalyst-free and expeditious general synthesis of N-benzyl-N-arylcyanamides under ultrasound irradiation at room temperature. Ultrason Sonochem 56:481–486. https://doi.org/10.1016/j.ultsonch.2019.04.038

    Article  CAS  Google Scholar 

  26. Östman M, Björlenius B, Fick J, Tysklind M (2019) Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant. Sci Total Environ 649:1117–1123

    Article  CAS  Google Scholar 

  27. Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B 140:92–97

    Article  CAS  Google Scholar 

  28. Rahdar S, Ahmadi S (2019) The removal of amoxicillin with Zno nanoparticles in combination with US-H2O2 advanced oxidation processes from aqueous solutions. Iran J Health Sci 7:36–45

    Google Scholar 

  29. Ravikumar K et al (2019) Enhanced tetracycline removal by in situ NiFe nanoparticles coated sand in column reactor. J Environ Manage 236:93–99

    Article  CAS  Google Scholar 

  30. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  31. Safari GH, Nasseri S, Mahvi AH, Yaghmaeian K, Nabizadeh R, Alimohammadi M (2015) Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. J Environ Health Sci Eng 13:76

    Article  CAS  Google Scholar 

  32. Saien J, Ojaghloo Z, Soleymani A, Rasoulifard M (2011) Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chem Eng J 167:172–182

    Article  CAS  Google Scholar 

  33. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  34. Shaojun J, Zheng S, Daqiang Y, Lianhong W, Liangyan C (2008) Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J Environ Sci 20:806–813

    Article  Google Scholar 

  35. Slots J, Ting M (2002) Systemic antibiotics in the treatment of periodontal disease. Periodontol 2000 28:106–176

    Article  Google Scholar 

  36. Toolabi A et al (2018) Optimizing the photocatalytic process of removing diazinon pesticide from aqueous solutions and effluent toxicity assessment via a response surface methodology approach. Rend Lincei Sci Fis Nat 1:1. https://doi.org/10.1007/s12210-018-0751-2

    Article  Google Scholar 

  37. Torkzadeh-Mahani R, Foroughi MM, Jahani S, Kazemipour M, Hassani Nadiki H (2019) The effect of ultrasonic irradiation on the morphology of NiO/Co3O4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. Ultrason Sonochem 56:183–192. https://doi.org/10.1016/j.ultsonch.2019.04.002

    Article  CAS  Google Scholar 

  38. Virkutyte J, Varma RS (2014) Eco-friendly magnetic iron oxide pillared montmorillonite for advanced catalytic degradation of dichlorophenol. ACS Sustain Chem Eng 2:1545–1550. https://doi.org/10.1021/sc5002512

    Article  CAS  Google Scholar 

  39. Wacławek S, Grübel K, Silvestri D, Padil VVT, Wacławek M, Černík M, Varma RS (2018) Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies 12:21

    Article  CAS  Google Scholar 

  40. Wang X, Wang Y, Li D (2013) Degradation of tetracycline in water by ultrasonic irradiation. Water Sci Technol 67:715–721

    Article  CAS  Google Scholar 

  41. Wu Y et al (2019) Three-dimensional α-Fe2O3/amino-functionalization carbon nanotube sponge for adsorption and oxidative removal of tetrabromobisphenol. Sep Purif Technol 211:359–367

    Article  CAS  Google Scholar 

  42. Xu L, Chu W, Graham N (2014) Degradation of di-n-butyl phthalate by a homogeneous sono–photo–Fenton process with in situ generated hydrogen peroxide. Chem Eng J 240:541–547

    Article  CAS  Google Scholar 

  43. Xu J et al (2019) Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous Cu-doped FeOOH composite in aqueous solution. Environ Sci Pollut Res 26:2820–2834

    Article  CAS  Google Scholar 

  44. Yang X, Cheng X, Elzatahry AA, Chen J, Alghamdi A, Deng Y (2019) Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions. Chin Chem Lett 30:324–330

    Article  CAS  Google Scholar 

  45. Zhang C, Xue J, Cheng D, Feng Y, Liu Y, Aly HM, Li Z (2019) Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L. Environ Pollut 250:47–57

    Article  CAS  Google Scholar 

  46. Zhu J, Snow DD, Cassada D, Monson S, Spalding R (2001) Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 928:177–186

    Article  CAS  Google Scholar 

  47. Zhu Y, Liu J, Liao Y, Lv W, Ma L, Wang C (2018) Degradation of vanillin during lignin valorization under alkaline oxidation. Top Curr Chem 376:29. https://doi.org/10.1007/s41061-018-0208-1

    Article  CAS  Google Scholar 

  48. Zou X, Zhou T, Mao J, Wu X (2014) Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chem Eng J 257:36–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the support and assistance extended by the facilitators during the research.

Author information

Affiliations

Authors

Contributions

All authors have contributed different sections and studies in this review article.

Corresponding authors

Correspondence to Mehrdad Khatami or Rajender S. Varma.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malakotian, M., Asadzadeh, S.N., Khatami, M. et al. Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments. Clean Techn Environ Policy 21, 1665–1674 (2019). https://doi.org/10.1007/s10098-019-01733-w

Download citation

Keywords

  • Fe3O4 nanoparticles
  • Tetracycline
  • Ultrasonic wave
  • Persulfate
  • AOPs