Skip to main content
Log in

Evaluation of riverbank filtration in the removal of pesticides: an approximation using column experiments and contaminant transport modeling

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The potential of riverbank filtration in the removal of five pesticides commonly used in Colombia (atrazine, ametryn, carbofuran, diuron and propanil) was evaluated through a series of column experiments and solute transport modeling. The experiments consisted of two soil columns run under saturated regime, with sediments and water collected from the rivers Loessnitztal and Elbe (East Germany), respectively. Six experiments were performed at 10 and 20 °C, and the final concentrations of the pesticides were used to solve the one-dimensional advection–dispersion equation using an inverse approach. Variables such as retardation factor, first-order degradation coefficient, and dispersion coefficient were assessed for all the pesticides except propanil, which rapidly degraded in solution. The parameters obtained for one of the experiments were introduced into a groundwater flow model from the Loessnitztal site, and the code MT3DMS was used to simulate a contaminant pulse coming from the river. Four different scenarios were considered to determine the effect of adsorption and degradation on the fate of the pesticides. The results showed that, although the persistence of pesticides depends on the properties of each compound, a maximum of 30% removal was achieved during the column experiments, and a log removal of 9 through the numerical modeling. Because of the sensitivity of the fate of contaminants to sorption and degradation, field and laboratory work should be carried on to determine the removal coefficient of the dissolved and adsorbed phases of the compounds, the type of degradation to be expected, and the real values of longitudinal and transverse dispersivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Google Earth. Loessnitztal river to the south; BR: production well; GWM: observation well; FWM: surface water level measurements

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agertved J, Rugge K, Barker JF (1993) Transformation of the herbicides MCPP and Atrazine under natural aquifer conditions. Groundwater 30(4):500–506

    Article  Google Scholar 

  • ASTM (2006) Standard practice for classification of soils for engineering purposes (unified soil classification system). Designation: D 2487-06. ASTM International, p 12

  • Baluch HU, Somasundaram L, Kanwar RS, Coats JR (1993) Fate of major degradation products of atrazine in Iowa soils. J Environ Sci Health B28(2):127–149

    Article  CAS  Google Scholar 

  • Benotti MJ, Song RG, Wilson D, Snyder SA (2012) Removal of pharmaceuticals and endocrine disrupting compounds through pilot- and full-scale riverbank filtration. Water Sci Technol Water Supply 12(1):11–23

    Article  CAS  Google Scholar 

  • Bertelkamp C, Reungoat J, Cornelissen ER, Singhal N, Reynisson J, Cabo AJ, van der Hoek JP, Verliefde ARD (2014) Sorption and biodegradation of organic micropollutants during river bank filtration: a laboratory column study. Water Res 52:231–241

    Article  CAS  Google Scholar 

  • Bertelkamp C, Verliefde ARD, Schoutteten K, Vanhaecke L, Vanden Bussche J, Singhal N, van der Hoek JP (2016) The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Sci Total Environ 544:309–318

    Article  CAS  Google Scholar 

  • Buchanan I, Liang HC, Liu Z, Razaviarani V, Rahman MdZ (2010) Pesticides and herbicides. Water Environ Res 82(10):1594–1693

    Article  CAS  Google Scholar 

  • Chiang W-H (2005) 3D-groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and transport processes, 2nd edn. Springer, Berlin, p 414

    Google Scholar 

  • Chiang W-H, Kinzelbach W (1994) PMPATH :an advective transport model for processing modflow and modflow. Geol Surv Hambg, Germany

    Google Scholar 

  • Chiang W-H, Kinzelbach W (1998) Processing modflow: a simulation system for modeling groundwater flow and pollution. User’s guide, p 334

  • Defensoria del Pueblo (2010) Diagnóstico de la calidad de agua para consumo humano año 2009, p 66

  • Defensoría del Pueblo (2007) Tercer diagnóstico sobre calidad de agua para consumo humano, p 168

  • DIN (2011) DIN 18123:2011-04-Baugrund, Untersuchung von Bodenproben-Bestimmung der Korngrößenverteilung (grain size distribution). Deutsches Institute fur Normung

  • Doussan C, Poitevin G, Ledoux E, Detay M (1997) River bank filtration: modelling of the changes in water chemistry with emphasis in nitrogen species. J Contam Hydrogeol 25:129–156

    Article  CAS  Google Scholar 

  • HTW Dresden (2012) Uferfiltration im Lößnitztal - Modellierung der Grundwasserströmung (Bank filtration at Loessnitztal: groundwater flow modeling). University of Applied Sciences Dresden, unpublished report, p 27

  • Eckhard W (1999) Laboratory tests for simulation of riverbank filtration processes. In: Abstracts international riverbank filtration conference, Louisville (Kentucky), November 4th–6th 1999, p 11

  • Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice Hall, Englewook Cliffs, p 500

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewook Cliffs, p 604

    Google Scholar 

  • Fried JJ (1975) Groundwater pollution. Elsevier, Amsterdam, p 329

    Google Scholar 

  • Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266(3–4):139–144

    Article  CAS  Google Scholar 

  • IAvH, IDEAM, IIAP, INVEMAR, SINCHI (2011) Informe del Estado del Medio Ambiente y de los Recursos Naturales Renovables 2010. Instituto de Hidrología, Meteorología y Estudios Ambientales–IDEAM, Bogotá, p 384

  • ICA (2011) Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2010. Instituto Colombiano Agropecuario, Bogotá, p 96

    Google Scholar 

  • ICA (2016) Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015. Instituto Colombiano Agropecuario, Bogotá, p 128

    Google Scholar 

  • IDEAM (2010) Estudio Nacional del Agua 2010. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, p 420

    Google Scholar 

  • IDEAM (2015) Estudio Nacional del Agua 2014. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, p 493

    Google Scholar 

  • Jaramillo M (2012) Riverbank filtration: an efficient and economical drinking-water treatment technology. Dyna 171:148–157

    CAS  Google Scholar 

  • Jekel M, Grischek T (2003) Riverbank filtration: the European experience. In: Melin G (ed) Riverbank filtration: the future is now. Program and abstracts of the 2nd international Riverbank Filtration conference, Cincinnati, Ohio, USA. September 16th–19th, 2003

  • Kuehn W, Mueller U (2000) Riverbank filtration: an overview. J Am Water Works Assoc (AWWA) 92(12):60–69

    Article  CAS  Google Scholar 

  • Kuster M, Díaz-Cruz S, Rosell M, López de Alda M, Barceló D (2010) Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters. Chemosphere 79:880–886

    Article  CAS  Google Scholar 

  • Lallemand-Barres P, Peaudecerf P (1978) Recherche des relations entre la veleur de la dispersivite macroscopique d’un milieu aquifere, ses autres caracteristiques et les conditions de mesure, etude bibliographique. Bulletin, Bureau de Recherches Geologiques et Miniéres, Sec. 3/4:277–287

  • Lewis J, Sjöstrom J (2010) Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J Contam Hydrol 115:1–13

    Article  CAS  Google Scholar 

  • Mao M, Ren L (2005) Simulating nonequilibrium transport of Atrazine through saturated soil. Groundwater 42(4):500–508

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 2:431–441

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Survey, Techniques of water-resources investigations, book 6, chapter A1, p 586

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Ormad MP, Miguel N, Claver J, Matesanz JM, Ovelleiro JL (2008) Pesticides removal in the process of drinking water production. Chemosphere 71:97–106

    Article  CAS  Google Scholar 

  • Pang L, Close ME (1999) Attenuation and transport of atrazine and picloram in an alluvial gravel aquifer: a tracer test and batch study. NZ J Mar Freshw Res 33(2):279–291

    Article  CAS  Google Scholar 

  • Paraiba LC, Spadotto CA (2002) Soil temperature effect in calculating attenuation and retardation factors. Chemosphere 48:905–912

    Article  CAS  Google Scholar 

  • Perkins TK, Johnson OC (1963) A review of diffusion and dispersion in porous media. Soc Petrol Eng J 3:70–84

    Article  CAS  Google Scholar 

  • Rashid B, Husnain T, Riazuddin S (2010) Herbicides and pesticides as potential pollutants: a global problem. In: Ashraf M et al (eds) Plant adaptation and phytoremediation. Springer, Berlin, pp 427–447

    Chapter  Google Scholar 

  • Ray C, Soong TWD, Roadcap GS, Borah DK (1998) Agricultural chemicals: effects on wells during floods. J Am Water Work Assoc 90:90–100

    Article  CAS  Google Scholar 

  • Ray C, Soong TW, Lian YQ, Roadcap GS (2002) Effect of flood-induced chemical load on filtrate quality at bank filtration sites. J Hydrol 266:235–258

    Article  CAS  Google Scholar 

  • Romero LG, Pizzolati BS, Soares MBD, Michelan DCGS, Sens ML (2010) Bank filtration: application in rural areas. Case studies in Santa Catarina, Brazil. In: Conference proceedings on 21st century watershed technology: improving water quality and environment

  • SAN (2011) List of prohibited pesticides. Sustainable agriculture network, p 8

  • Sánchez-Pérez JM, Montuelle B, Mouchet F, Gauthier L, Julien F, Sauvage S, Teissier S, Dedieu K, Destrieux D, Vervier P, Gerino M (2013) Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides. Ann Limnol Int J Lim 49:87–95

    Article  Google Scholar 

  • Schaffner C, Ahel M, Giger W (1987) Field studies on the behaviour of organic micropollutants during infiltration of river water to groundwater. Water Sci Technol 19:1195–1196

    Article  CAS  Google Scholar 

  • Scribner EA, Thurman EM, Zimmerman LR (2000) Analysis of selected metabolites in surface and ground water in the United States. Sci Total Environ 248:157–167

    Article  CAS  Google Scholar 

  • Simunek J, van Genuchten MTh, Sejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC-TPS-71. International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, p 32

  • Sinclair CJ, Boxall ABA (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Technol 37(20):4617–4625

    Article  CAS  Google Scholar 

  • Son BT (2010) Role of riverbank filtration in the attenuation of herbicides. Ph.D. Dissertation, School of Environmental Sciences, University of East Anglia, p 255

  • Toride N, Leij FJ, van Genuchten MTh (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.0, research report no. 137. U. S. Salinity Laboratory, USDA, ARS, Riverside, CA, p 131

  • Tufenkji N, Ryan JN, Elimelech M (2002) The promise of bank filtration. Environ Sci Technol 1:423–428

    Google Scholar 

  • University of Hertfordshire’s PPDB (pesticide properties database). http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Cited 3 Aug 2014

  • U.S. National Library of Medicine’s TOXNET system. http://toxnet.nlm.nih.gov. Cited 15 Nov 2014

  • Verstraeten IM, Heberer T (2002) Organic chemical removal issues. In: Ray C, Melin G, Linsky R (eds) Riverbank filtration improving source-water quality, vol 43. Springer, Berlin, pp 321–330

    Chapter  Google Scholar 

  • Verstraeten IM, Carr JD, Steele GV, Thurman EM, Dormedy DF (1999) Surface-water/ground-water interaction: herbicide transport into municipal collector wells. J Environ Qual 28(5):1396–1405

    Article  CAS  Google Scholar 

  • Verstraeten IM, Heberer T, Scheytt T (2002a) Occurrence, characteristics, transport, and fate of pesticides, pharmaceuticals, industrial products, and personal care products at riverbank filtration sites. In: Ray C, Melin G, Linsky R (eds) Riverbank filtration improving source-water quality, vol 43. Springer, Berlin, pp 175–227

    Chapter  Google Scholar 

  • Verstraeten IM, Thurman EM, Lindsey ME, Lee EC, Smith RE (2002b) Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply. J Hydrol 266:190–208

    Article  CAS  Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 16(6):905–908

    Article  Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and user’s guide. US Army Corps of Engineers, Washington, DC, p 239

    Google Scholar 

Download references

Acknowledgements

The authors thank the water company ZWA Hainichen for the field work support at the riverbank filtration site Loessnitztal in East Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Jaramillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo, M., Grischek, T., Boernick, H. et al. Evaluation of riverbank filtration in the removal of pesticides: an approximation using column experiments and contaminant transport modeling. Clean Techn Environ Policy 21, 179–199 (2019). https://doi.org/10.1007/s10098-018-1627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1627-y

Keywords

Navigation