Skip to main content

Advertisement

Log in

Modeling, simulation and intensification of hydroprocessing of micro-algae oil to produce renewable aviation fuel

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Micro-algae are photosynthetic organisms, which represent a promissory renewable raw material for biofuels production, since they can be cultivated in non-fertile lands, avoiding the competition with food crops for land use. From micro-algae, oil can be obtained oil that can be converted to biodiesel, green diesel and biojet fuel. In particular, the renewable aviation fuel is one of the less explored biofuels; nevertheless, for the aviation sector, this is the best alternative to reduce CO2 emissions, allowing its sustainable development. In order to produce hydrocarbons in the boiling point range of jet fuel, we need to transform the micro-algae oil. A number of research projects report the use of micro-algae oil for the production of biojet fuel through the hydrotreating process. However, the application of process intensification strategies for the hydroprocessing of micro-algae oil has not been reported. Therefore, in this work we propose the modeling, simulation and intensification of the hydrotreating process to produce biojet fuel, considering micro-algae oil as raw material. The hydroprocessing of micro-algae oil is modeled in Aspen Plus processes simulator, based on data from an experimental study recently reported. The produced renewable hydrocarbons are purified through conventional and intensified distillation sequences; thereby, conventional and intensified hydrotreating processes are defined and evaluated in terms of total annual costs, CO2 emissions and biojet fuel price. Simulation results show that the implementation of intensification strategies leads to the production of biojet fuel with reduced carbon dioxide emissions, 34% less, and a competitive price per liter, 78% cheaper than fossil jet fuel price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aca-Aca M, Campos-Gonzalez E, Sanchez-Daza O (2009) Estimación de propiedades termodinámicas de los compuestos involucrados en la producción de biodiésel. Superficies y Vacío 22(3):15–19

    Google Scholar 

  • Aeropuerto Internacional del Norte (2016). http://www.adelnorte.com.mx/esp/pv/pv-combustible-h.html. Accessed 17 Feb 2017

  • Agosta A (2002) Development of a chemical surrogate for JP-8 aviation fuel using a pressurized flow reactor. Drexel University, Philadelphia

    Google Scholar 

  • ASTM D7566–16b (2016) Standard specification for aviation turbine fuel content containing synthesized hydrocarbons. ASTM Int. https://doi.org/10.1520/D7566-16B

    Article  Google Scholar 

  • Atabania AE, Silitonga AS, Badruddin AA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093

    Article  Google Scholar 

  • Bala DD, Chidambaram D (2016) Production of renewable aviation fuel range alkanes from algae oil. R Soc Chem Adv 6:14626–14634

    CAS  Google Scholar 

  • Bwapwa JK, Anadraj A, Trois C (2017) Possibilities for conversion of microalgae oil into aviation fuel: a review. Renew Sustain Energy Rev 80:1345–1354

    Article  Google Scholar 

  • Chacin E (2010) La OACI y los combustibles alternativos sustentables de aviación, Taller de Financiamiento, Legislación, Logística y Distribución, Plan de Vuelo, p 21

  • Chevron (2007) Aviation fuels technical review. Chevron Products Company. https://www.cgabusinessdesk.com/document/aviation_tech_review.pdf. Accessed 2 May 2017

  • Chiaramonti D, Prussi M, Buffi M, Tacconi D (2014) Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels. Appl Energy 136(31):767–774

    Article  CAS  Google Scholar 

  • Choo M-Y, Oi LE, Show PL, Chang J-S, Ling TCh, Ng E-P, Phang SM, Juan JCh (2017) Recent progress in catalytic conversion of microalgae oil to green hydrocarbon: a review. J Taiwan Inst Chem Eng 000:1–9

    Google Scholar 

  • Dutta S, Neto F, Coelho MC (2016) Microalgae biofuels: a comparative study on techno-economic analysis and life-cycle assessment. Algal Res 20:44–52

    Article  Google Scholar 

  • Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56

    Article  CAS  Google Scholar 

  • Guervós-Sánchez ME (2003) Principales técnicas de almacenamiento de hidrógeno. http://estherguervos.galeon.com/4alm.pdf. Accessed 17 Mar 2016

  • Gutiérrez-Antonio C, Gómez-Castro FI, Segovia-Hernández JG, Briones-Ramírez A (2013) Simulation and optimization of a biojet fuel production process. Comput Aided Process Eng 32:13–18

    Article  Google Scholar 

  • Gutiérrez-Antonio C, Gómez-Castro FI, Hernández S, Briones-Ramírez A (2015) Intensification of a hydrotreating process to produce biojet fuel using thermally coupled distillation. Chem Eng Process 88:29–36

    Article  CAS  Google Scholar 

  • Gutiérrez-Antonio C, Gómez-Castro FI, Romero-Izquierdo AG, Hernández S (2016a) Energy integration of a hydrotreating process for the production of biojet fuel. Comput Aided Process Eng 38:127–132

    Article  CAS  Google Scholar 

  • Gutiérrez-Antonio C, Romero-Izquierdo AG, Gómez-Castro FI, Hernández S, Briones-Ramírez A (2016b) Simultaneous energy integration and intensification of the hydrotreating process to produce biojet fuel from jatropha curcas. Chem Eng Process 110:134–145

    Article  CAS  Google Scholar 

  • Gutiérrez-Antonio C, Gómez-Castro FI, de Lira-Flores JA, Hernández S (2017) A review on the production processes of renewable jet fuel. Renew Sustain Energy Rev 79:709–729

    Article  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185

    Article  CAS  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  CAS  Google Scholar 

  • Hari TK, Yaakob Z, Binitha NN (2015) Aviation biofuel from renewable resources: routes, opportunities and challenges. Renew Sustain Energy Rev 42:1234–1244

    Article  Google Scholar 

  • International Air Transport Association (2009) A global approach to reducing aviation emissions–first stop: carbon neutral growth from 2020. www.iata.org. Accessed 2 May 2017

  • International Civil Aviation Organization (2013) ICAO environmental report 2013: aviation and climate change. http://cfapp.icao.int/Environmental-Report-2013/. Accessed 2 May 2017

  • Kandel K, Anderegg JW, Nelson NC, Chaudhary U, Slowing II (2014) Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J Catal 314:142–148

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Turner C, Allen M, Gray P, Dietzgen RG, Gresshoff PM, Hankamer B, Heimann K, Scott PT, Stephens E, Speight R, Nielsen LK (2013) Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. Biofuels Byprod Biorefin 7(4):416–428

    Article  CAS  Google Scholar 

  • Kruger JS, Christensen ED, Dong T, Wychen SV, Fioroni GM, Pienkos PT, McCormick RL (2017) Bleaching and hydroprocessing of algal biomass derived lipids to produce renewable diesel fuel. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.7b01867

    Article  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • McCall MJ, Kocal JA, Bhattacharyya A, Kalnes TN, Brandvold TA (2009) Production of aviation fuel from renewable feedstocks. US Patent 0283442 A1

  • Naumienko B, Rarata G (2010) Actual needs and possibilities to producing bio-jet. Prace Instytutu Lotnictwa Nr 5(207):24–31

    Google Scholar 

  • Petróleos Mexicanos (2017) Indicadores petroleros. Precio al público de productos petrolíferos. http://www.pemex.com/ri/Publicaciones/Indicadores%20Petroleros/epublico_esp.pdf. Accessed 28 Sept 2017

  • Rodríguez Vivanco J (2011) Cálculo de emisiones. CENEAM. http://www.magrama.gob.es/es/ceneam/programas-de-educacion-ambiental/hogares-verdes/2011_-_16_Calculo_de_emisiones_HV2011_tcm7-171149.pdf. Accessed 5 May 2017

  • Rong BG, Errico M (2012) Synthesis of intensified simple column configurations for multicomponent distillations. Chem Eng Process 62:1–17

    Article  CAS  Google Scholar 

  • Soley Biotechnology Institue (2018) http://www.soleybio.com/oil-trade.html. Accessed 27 Mar 2018

  • Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (2004) Analysis synthesis and design of chemical process, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Valipour M (2013) Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Adv Agric Sci Eng Res 3(2):631–640

    Google Scholar 

  • Valipour M (2017) Global experience on irrigation management under different scenarios. J Water Land Dev 32:95–102

    Article  Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2013) A new approach for environmental crises and its solutions by computer modeling. In: The 1st international conference on environmental crises and its solutions

  • Valipour M, Sefidkouhi MAG, Raeini-Sarjaz M (2017) Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric Water Manag 180:50–60

    Article  Google Scholar 

  • Vásquez MC, Silvia EE, Castillo EF (2017) Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105:197–206

    Article  CAS  Google Scholar 

  • Verma D, Kumar R, Rana BS, Sinha AK (2011) Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy Environ Sci 4:1667–1671

    Article  CAS  Google Scholar 

  • Wang W-Ch, Tao L (2016) Bio-jet fuel conversion technologies. Renew Sustain Energy Rev 53:801–822

    Article  CAS  Google Scholar 

  • Yang X, Guo F, Xue S, Wang X (2016) Carbon distribution of algae-based alternative aviation fuel obtained by different pathways. Renew Sustain Energy Rev 54:1129–1147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Gutiérrez-Antonio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Antonio, C., Gómez-De la Cruz, A., Romero-Izquierdo, A.G. et al. Modeling, simulation and intensification of hydroprocessing of micro-algae oil to produce renewable aviation fuel. Clean Techn Environ Policy 20, 1589–1598 (2018). https://doi.org/10.1007/s10098-018-1561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1561-z

Keywords

Navigation